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Preface

The AirForce (and the Department of Defense in

general) is particularly interested (as evidenced by the fact

that many of the references used in preparing this thesis

were sponsored by Department of Defense agencies) in research

ih robust control systems design since the results are

directly applicable to many of its sophisticated weapon

systems. Several of the laboratories in the Air Force Systems

Commands' Aeronautical Systems Division are helping to sponsor

this Air Force Institute of Technology (AFIT) Masters thesis

project. The primary motivation for this project is that

many current control systems are and most future control

systems will be, implemented in digital computers and, there-

'ore, will be discrete-time controllers (Ref 7). Furthermore,

if robust controllers can be used, there exists the possibility

of reduced computational and hardware expense.

Thanks are due Professor Peter S. May~eck for his

invaluable guidance concerning the basic nature of this robust

control system-study as well as the final format of this

thesis. I would also like to thank the other thesis committee

members, Lt. Col. Carpinella and Capt. Silverthorn, for

comments and guidance during the final preparation of this

thesis. Special thanks are due to Sandra A., Todd Q., Weston

S., and Jodi S. Lloyd, my family, for putting up with me during

the sometimes frustrating but rewarding task of completing this

t thesis.
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Abstract

The Doyle and Stein robustness enhancement technique

for continuous-time LQG stochastic controllers was investigated

in application to simple examples and a realistic Apollo

Command Service Module/Lunar Module Thrust Vector Control

System that exhibited severe robustness problems in its initial

design. This technique was then extended to discrete-time

systems in two ways. First, the continuous-time controller

to which the Doyle and Stein technique had been applied was

discretized using first order approximations. Second, an

approximation to their continuous-time technique was developed

for sampled-data control systems. In addition, an attempt

was made to-enhance the robustness of sampled-data systems

by directly picking the gain of the Kalman filter within the

controller structure based on an approach similar to that

of Doyle and Stein.

Sampled-data controllers were designed using each of these

approaches. The resulting performance analysis for each closed-

loop system was based on the time histories of the mean and

covariance of the "truth model" states and controls as well

as on the eigenvalues of the closed-loop system. In both the

discretized continuous-time and sampled-data cases, significant

steady-state robustness enhancement was observed. Results

for picking the Kalman filter gain directly were inconclusive.

General purpose interactive software for developing robustified

LQG controllers was also produced and documented.

ix



I Introduction

The p .rpose of this thesis is to demonstrate a syste-

matic procedure to design computationally-efficient, discrete-

time control system algorithms that will perform adequately

(i.e., at least maintain closed-loop system stability) when

ucertain parameters in the system design models vary

significantly. Such a control algorithm is said to have

stability robustness-or more simply is said to be "robust".

This introduction provides a background for this study, a

summary of recent efforts in the design of robust control

[systems, and a discussion of the approach taken in this thesis.

Following this, there is a brief discussion of the notation

used in the remainder of this thesis.

Background

Stability robustness is a concern in control systems

tince it determines if control systems will operate in a

stable fashion even though certain design parameters may

change from the nominal values used in the design of the

control system. One reason parameter changes may occur is

that a systems' physical operating characteristics may change

with environmental conditions. For example, aircraft control

systems are designed to operate at or near certain flight

conditions in the flight envelope and must be adjusted when

the operating point changes. Parameter changes may also occur* UI



because they are not known exactly at the time of the

'controller design and/or because during system operation

physical componbnts may fail or may degrade with age or

environmental conditions (Refs 6 and 10).. For instance,

in designing controllers for wing flutter suppression in

aircraft and thrust vector control of missles and spacecraft,

the bending mode description of these flexible vehicles can

not be specified exactly. Thus, when a controller is designed

based on the nominal description of these modes, the actual

closed-loop system may perform inadequately or become unstable

if the true values are different from the nominal ones. In

addition, characterization of the bending modes may change

as a result of changing loads such as when the fuel supply

decreases. Two additional areas of concern that potentially

affect the ftability robustness of control systems are sensor

failures and computer wordlength. Systems can be designed so

that a certain number of sensor failures can be tolerated

Without causing unstable control system operdtion. Another

equally important consideration, computer wordlength, affects

robustness in at least two ways. First, if a control system

is implemented using a computer program, finite computer

wordlength affects the accuracy of any calculations and,

subsequently, the stability. Second, even if the program

results in a stable closed-loop system on one computer, there

are no guarantees that the program will result in a stable

closed-loop system if a different computer with a different

2



wordlength is used (Ref 1). Ackerman (Ref 1) and Maybeck

(Ref 10) discuss still more areas that may affect robustness,

but it is more important at this point to discuss robustness

itself and to consider why robustness is an important issue.

Robustness. An automatic control system that exhibits

the property of stability robustness is one in which the closed-

loop system will remain stable should certain system design

parameters change from the design values. More precisely,

robustness specifies the finite regions of the design model

around a nominal model in which stable control system operation

is preserved. Although some papers (Refs 6 and 13) deal with

robustness only in regard to parameter variations within the

basic controlled system, robustness actually encompasses all

* possible variations in design models that can affect control

system stability (Ref 10). For a detailed rigorous discussion

of robustness, see Maybeck (Ref 10).

Importance of Robustness. There are.several reasons

why robustness is an important control system property. One

reason is that the models used in the control system design

are just that, models! Subsequently, no matter how much effort

is put into defining the system model there will always be

* variations between the model and the physical system it

represents (Ref 10). In addition to not having perfect models,

the physical components of a system tend to degrade with age

or environmental conditions (Ref 6). For either of these two

3



reasons, a control system must have robustness if it ever is

to attain stable operation.

By defining robustness properties with respect to

various areas of concern, systems or portions of systems that

require additional or different stabilizing efforts can be

pinpointed. For example, certain portions of a control system

might be implemented using adaptive control techniques when

large uncertainties in design parameters exist. Actually,

adaptive controf techniques could possibly handle most systems

with uncertain parameters. But, since adaptive control is

comparatively expensive, a system's robustness can be used

to indicate when the additional expense is warranted. It

should be pointed out that robust designs generally have some

performance degradation when compared to adaptive designs

(Ref 1). furthermore, robustness studies can be used to

determine how much of critical control system components

(i.e., actuators, sensors) such as those onboard aircraft or

tpacecraft, should be implemented in quadruplex redundancy

to guarantee reliability and stability. The need for expensive

quadruplex redundancy may in some cases be reduced by using

robust control system designs. For example, robust automatic

flight control systems that result in a stable closed-loop

system even though some actuators and/or sensors fail are

much less expensive than control systems that require

quadruplex redundancy (Ref i

F ,
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Recent Efforts in Robust Control System Design

9 Robustness is the subject of several recent articles

in control systems literature. Safonov (Ref 15), for instance,

in a paper presented at the 1979 IEEE Conference on Decision

and Control, proves a theorem based on L2 conic-sector tech-

niques, that leads to a precise quantitative characterization

of feedback sensitivity to large-but-bounded frequency-

dependent plant variations. He points out that an interesting

implication of bhe theorem is that there exists a fundamental

limit on the amount by which output feedback can reduce a given

plant's sensitivity to frequency-dependent plant variations.

In an earlier work, Safonov and Athans (Ref 14) discuss the

robustness properties of a restricted class of controllers

with respect to large plant parameter variations. Specifically,

they suggest that linear-quadratic-Gaussian, controllers have

the desirable robustness properties of full state feedback

controllers (i.e., guaranteed classical gain margins of -6dB

to +00dB and phase margins of +60* on all channels even when

implemented using a Kalman filter for a plant state estimator.

Doyle (Ref 3), however, shows by a simple counter-

example that the results claimed by Safonov and Athans do not

hold in general for the LQ controller-Kalman filter combination.

Since then, Doyle and Stein (Ref 2) developed a technique

that recovers the desirable robustness properties of a full

qtate le-eback controller that uses a standard LOG controller

in which the Kalman filter gains are adjusted in a particular

5



fashion (to be discussed later). In addition to demonstratingF *their technique, they also show that other frequently mentioned

techniques to recover robustness do "not work in general"

unless the techniques drive some observer.poles toward stable

plant zeros and the others toward infinity as their technique

does.

Approach

This study wIll be concerned with extending a particular

technique for designing robust continuous-time controllers to

discrete-time controllers, since the current trends indicate

most future control systems will be implemented in digital

computers. The technique that will be the basis of this

study is proposed by J.C. Doyle and G. Stein (Ref 2). Their

technique ig directly applicable to the design of the robust

continuous-time Linear Quadratic Gaussian (LQG) controllers

with uncertain parameters embedded in the system model. The

basic idea of their technique is to add pseudonoise at the

control points of entry (See the Enhancing Robustness in

Continuous-time Systems section of Chapter II for a discussion

of how this is accomplished). Note that their technique is

restricted to linear plants that are both observable and

controllable, have the same number of inputs as outputs, and

have no transmission zeros in the right half of the s-plane.

6
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In this thesis a relatively simple known system model

Jwith a single uncertain parameter is used as the basis for
design of robust controllers. For this model several different

controllers are developed. First a continuous-time LQG

controller is developed. Next, several different approaches

are taken to adapt Doyle and Stein's procedure to discrete-

time LQG controllers. After this, a procedure described by

Maybeck (Ref 10) for designing robust sampled-data controllers

is used. In alr cas6s above, the performance is analyzed

using a covariance analysis. The development of all the

controllers and the performance analysis algorithms is

discussed in detail in Chapter II. The results and conclusions

are discussed in Chapter III.

One of the principle by-products of this thesis is

the general~purpose user-oriented interactive computer program

that has been developed. The program mechanizes the formation

of and the performance analysis of robust LQG controllers.

Appendices A and B describe the program, Appendix C discusses

some of the considerations that were involved in the programming.

Appendix D contains the software verification description and

Appendix E is a users manual for the program.

Notation

Before leaving this introduction it is necessary to

introduce somc of the notatior u in the fclloncinc stions

of this thesis. Random variables are indicated by an under

* F
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tilde, i.e., x is the notation for a random variable x. IfF , x in this case is also a vector, it will also be underlined,

i.e., x. All matrices are capitalized to distinguish them

from vectors and underlined unless they represent a one-

dimensional square matrix. All other notational devices will

be introduced as they are needed. Additionally, the symbol

_1" is read as "defined as".

8-
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I! Robust j Controllers

Introduction.

The purpose of this section is to-discuss the approach

taken in this thesis toward designing robust Linear Quadratic

Gaussian (LQG) controllers. In particular, robustness with

fespect to uncertain parameters embedded in the system model

is the primary concern of this study. Starting with a rela-

tively simple known system model with a single uncertain para-

meter, Doyle and Stein's (Ref 2) technique for designing ro-

bust continucus-time LQG controllers is applied and the per-

formance evaluated. Next, several different.approaches are

taken to try to adapt Doyle and Stein's procedure to discrete-

time LQG controllers. In addition to discussing the different

controllers-developed in this section, the software used to

implement the design and performance analysis is also dis- *1

cussed.

There are seven major subsections in fhis chapter.

7rt, the continuous-time LQG ccntroller and performance

analysis is introduced. 1Next, the Doyle and Stein techniqte

for enhancing robustness in continuous-time controllers is

discussed. Then the model to be used in this study is intro-

duced. Following this, the sampled-data LQG controller and

performance analysis are introduced. Next, the three dif-

f,-ent a..prac hez o L dtc :ing :c-ile S te i.n ' tc iique

to discrete-time LQG controllers are presented. The first

involves simply discretizing the continuous-time controller

9



after the Doyle and Stein technique is applied. The second

is a sampled-data controller for the given model in which

Att, where Qd is the strength of the assumed discrete-

time dynamics noise input and Q is the strength of the-cont

assumed continuous-time dynamics noise input from the Doyle

and Stein. The third approach involves directly picking the

Kplman filter gain K to achieve robustness without solving a

Riccati equation so as to attain the desired K.

Continuous-Time LQG Controller

The following development of the continuous-time LQG

controller is based on Maybeck (Ref 10).

The LQG controller shown in Fig 2.1 is an optimal

controller in the sense that it minimizes the cost function
H

c
I T

JC= E x (tf) Xf 2i(tf) +Z f

tf r..,)"T iyx(t) Kxu (t) (21
i - • - dt (2.1)

to  ( I(t). W£ux(t uu (t) [ t

where x(t) represents a system state at time t, u(t) repre-

sents a set of controls applied at time t, Xf is the cost-

weighting matrix for the final state, W (t) is the cost--XX
weighting matrix associated with all the states at time t,

W (t) is the cost-weighting matrix associated with applying-UU

control inputs at time t, and W and W are cross terms-xu -ux

relating cost for specific states and controls combinations.

TNote that W = W Note also that E is the expected valuej Noet Wu -ux"

10
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operator.
o For a physical system as in Fig 2.1, the state of

the system at time t is described by

x(t)= F(t) x(t) + B(t) u(t) + G(t) w(t) (2.2)

where w(t) is a zero mean white Gaussian noise output of

strength Q(t). That is

EIw(t) wT(t + _)I Q (t) ) (2.3)

A Kalman filter is used to estimate the mean of x(t),

conditioned on measurements of the form

z(t)= H(t) x(t) + v (t) (2.4)

R (t) is the strength of the zero-mean white Gaussian-C

measurement noise v (t) and isZ(

E Iv(t) vT (t + r) = Rc(t) 6(_) (2.5)

The-estimate is denoted by x(t) and is described by

the following relationships:

x(t)-- Fit) 9,(t) + B(t) u(t)

+ K(t) z(t) - H(t) 9(t)1 (2.6)

K(t)= P(t) H T (t) R- 1 (t) (2.7)

P in Eq (2.7) is the associated error covariance and is the

solution to the foward Riccati equation
(t)= F(t) P(t) + P(t) FT(t) + G(t) Q(t) GT ( t )

P-t) FT(tP ) I (t) H(t) P(t) (2.)

12



x and P are the initial conditions of differential equations-O -O

given in Eqs (2.6) and (2.8) respectively, where these are

the defining parameters of an a priori Gaussian density

function for x(t o )

The deterministic controller to be cascaded with the

Kalman filter to form the LQG controller is described by the

following equations:

u*(t)= -G*(tL x(t) (2.9)
- C -

G*(t)= W (t) B T (t) K c(t) (2.10)-C -UU -

where u*(t) is the optimal control to be applied, G*(t) isC

the optimal controller gain matrix and Kc (t) is the solution

to the backward Riccati equation with W = 0.
-XU -

-K It)= fT (t) K c(t) + K c(t) F(t) + W xx(t)

-1 T-Ec (t) B (t) Wuu (t) B(t) Kc(t) (2.11)

Kc(tf)= Xf

(For the case when W # 0, see the discussion in Appendix C.)
-xu

Note that the certainty equivalence principle applies to

Eq (2.9) so that x(t) can be replaced by _(t) in that equation

when measurements given by (2.4) replace perfect knowledge

of x(t) (Ref 10).

Since there are numerical complexities in handling the

time varying LQG controller and since these can ofter be

neglected in actual implementation, a constant-gain time

13
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invariant solution with stationary noise inputs .i!! be used.

That is, F, B, G, H, Q and R will be constant and the initial-C

filter transients and final deterministic controller transients

will be ignored during the design of the controller. Therefore,

in this case, the steady state error covariance P will be

used in place of P(t) and steady state K will be used instead

oT K (t). P and K are given by (Ref 10)

-cc
P= O= F P + P F +CQG -P H RI HP (2.13)

S-c - - -xx -c - -uu - -c

Two software routines were written specifically to

handle the Kalman filter and the deterministic optimal con-

troller. The flowcharts and source code listings are in

3 Appendices A and B respectively. Note that many subroutines

called in the software package cone from a set of routines

generated by Kleinman (Ref 5) and modified by Floyd (Ref 4).

Continuous-Time Performance Analysis

Since the control systems designed in this study are

stochastic regulators, the time historie- of the mean and

covariance of the truth model states x t(t) and the generated

controls u(t) are used as the basis of performance analysis.

in the test setup of Fig 2.2, the robustness of each controller

design to plant parameter variations is evaluated by comparing

the mean and covariance time histories when plant parameter

values in the truth model are varied from those in the controller

design model. The truth model in Fig 2.2 represents the most

14
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Fig 2.2 Performance Evaluation

complete and accurate mathematical model available to describe

the physical system to be controlled. This fs in contrast to

the model upon which the controller is based, which is usually

* a mathematical model of much lower dimension so that it can be

readily implemented in an online controller. Note that if the

system models and/or controllers are nonlinear, a Monte Carlo

simulation analysis would be required instead. Note also that

a time history of the quadratic cost function Jc of Eq (2.1)

is of little use since it gives no information as to individual

channel costs (Ref 10).

This test setup is described in detail for the discrete-

time case in Maybeck (Ref 10). The following continuous-time

performance analysis closely follows that discrete-time devel-

opment where possible. The following subscripts will be

used throughout this development:

c= controller model
t= truth model
a= augmented model

15
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cx= state controller gain
cy= input controller gain
cz= measurement controller gain

The truth model dynamics are given by

Ex= _t(t) xit(t) + Bt(t) 11(t)_ + -Gt(t) tw (t) (2.15)

The measurements available to the controller are

7z~t(t)= Ht(t) t(t) + v t(t) (2.16)

The initial conditions and strengths of the noises in these

two equations are:

E w = 0 (2.17)

E lwt(t) wT(t +r)1= a-t 6(T) (2.18)

ke 1;VPo)H 0 (2.19)

St t (t + T))= Rt 6(7) (2.20)

E i t (2.21)

B -(0) - T (2.22)

In general, the control input u(t) and the controller

states will be a function of the measurements, z, the con-

troller states, Xic, and the desired inputs, yd. It can thus

be written as (Ref30)

u('): c(t) Lc(t) 'Q~zt U )

+ Gy(t) Xd(t) (2.23A)

16



c (t)= F (t) xc(t) -cyW-c -C -c

+--B (t) z (t) (2. 23B)

-cz -t

Note that in general, Yd is not zero but that in the case of

the LQG regulators used in this thesis, yd is zero.

As stated earlier, the performance analysis provides

time histories of the mean and covariance of

a (t) (2-24)
[u(t)

For ya (t), the mean is mya(t), the covariance is P ya(t) and

the autocorrelation is -ya (t) (which is simply P ya(t) + mya (t)
Tm (t)).

-ya

As in Maybeck (Ref 10), let the cost be described as

Sjc= E 1 m q21(225)
• Idt k=1

-where q ...... qm are the scalar quantities of interest and are
T

linear combinations of y given by qk qk a For
m T

-ya Wk qk 2k then
S- k=l

dJc= 1 yT Wya T a1  tr 1 ayal (2.26)

dt

From these relationships, it can be seen that Tya' and thus

m and P as generated in the performance analysis, will be
E-ya -ya

of importance in producing Jc if desired (Ref 9).

Now, to characterize the statistics of Xa' the statis-

tics of the inernal process x must be characterized where-a

17



rx~ 
(2.27)

II

-a

The first step is to eliminate 
u and Ztfrom the equa-

tions for x and x Note, time arguments will 
be removed

for compactness wherever it creates no ambiguities. Equation

(2.15) becomes

It t + + G (lit s t +

+(Ft +Bt cz Ht) t + tIxle t Gcy Yc

+ + B , Vt + Gt 4t (2.28)

Eq (2.23B) becomes
:x - ~ d z(tX (2.29)

Letting

W. 
(2.30)

then

fnndT.-, ch that

(2.32)

where
18
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a _ L t tCt c z- C (2.33)

fl[El t'2cc

Ba-t*y (2.34)

~ t t-c } (2.35)

The initial conditions for x are

a(oE= t - a (2.3 6)

III (t) - 1[ °a(to) - OIT 0 t-  0  (2.37)
4o

The mean covariance and autocorrelation of x are

-- E~ 1(238)

E1 TI rT -(2.39)

~xaya a Xa a

LX axa E I) ( xa (2.40)

The time propagation equations of the mean ard covariance are

1.x M- x + a Yd (2.41,A)
a

F- = P + P FT + G. Q- GT(.4A
"aXa --- -;aa XaXa T (2.14-2

or alternately

0
19



It

-a o.-ix 0
a a

+ f a (t, r ) B(T) yd (T) d T (2.41B)

P (t)= fa(t, t0 ) Ex x(t 0 ) IT(t, to )XaXa aa

t at G !T(t, r) d7 (2.423)
ito

where Ia(t, t )'is the state transition matrix associated vith

as given in Eq (2.33). This form is more straightforward

for computer implementation when time-invariant systems and

controllers are used, since the integration involved in con-

puting _a(t, to) need only be accomplished once. At this

point in Maybeck's (ReflO) discrete-time performance analysis,

he presents-the means of expressing the cost equation in terms

of the augmented vectors. A similar derivation is not done

here since, as was mentioned earlier, computing the value of

-the cost function J is rarely of practical interest.

Recalling that the statistics of a is of particular
interest, a can now be related to x via

-a + (G.F
IUI=[cz Et 9 x c acy

+ t

where

20



b _a (2 .44)

and where z has been eliminated from u.

Since a is a linear combination of variables with

known statistics, that is La, v and yd, its mean and co-

variance can be written as (Ref 9)

m Y Mt G' Mxa + G2 Yd (2.45)
LY MU J G-cz !it -cy c[f" f 1 0

/ P = --xtxt -XtU

Sa L T- t p

_ It 4-G1 CZH 2xaxa [C TG

+ [ t I cz + [G__ H GC Exavt

- -t -ex

[0 G ] +[ i 2 at[ ] T ] (2.46)
cz -cx

it is obviously necessary to calculate a value for ;n

order to use Eq (2.46). By definition, Ixavt is

7-vtB E a t Ixa (Cj ]Lt(t) (01 T1  (2.47)=a vt C1 x

=K2 - ' P:t F= o a (2.L, ca!. be rev,'ritten as

21



, -- aajt ' , --X

lx (t _T T
'X ET - n(()T vt) (2.48

Note that the expected value in the second term of Eq (2.48)

is simply the mean of T , which is zero so that

ax(t)T (t)j (2.49)

Now, using the solution form of Eq (2.32), ExaVt becomes

Px = aI a(t t ) x (t) vT(t)
.a/ Ef-a ' o -ao

+ ft --a (t 'T) [~a(T) yd (T )

S+ ga (T) w (r) vT(t) dr C(2.50

The first term is zero since x (to ) and v (t) are assumed-a ot

independent and the mean of y (t) is zero. Now after expli-

citly writing out the augmented matrices, P is
-aM

P -El I(t I) II c
* L t t 0  ky (\ )  Y-J

,.

[at 7) t(T + Bt r) 2c () XZy TI+ t (t ": d T

Bc (r) r"~

-cz

22

a.

• - . |~



t -0vt wt a(t,) v () d) v() v(r t

B ( tT) vT(
-cz • (2.52)

The first term in Eq (2.52) is zero since v (T) is zero-mean-t

and the only random variable factor in the expression. Also,

the term with Gv (T) Wt( ) V (t) is zero since vt(t) and w (t)Gt ( 5  Zt (  _t ~tZ

are assumed to be independent and zero mean. This leaves a

Tconstant matrix multiplying vt(T) vt(t) as in Eq (2.53)

EX.t (t, t  Gcz(T) 1 vTt dt
at Bcz ()

(2.53)

The factor E vt(T) vt(t) is defined to be Rt(t) 6(t -T)

in Eq (2.5). Now applying the dirac delta sifting property

where t is the upper limit of the integration (Ref 8), Eq

(2.53) becomes

I(t) Gcz (t)

PXaVt = la (t, t) B Rt(t) (2.54)

The state transition matrix evaluated from time t to time t

is the identity matrix, I. The factor of in Eq (2.54) is

a result of integrating the dirac delta function over the

range to and t instead of integrating T out past time t. The

final result is

23
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ati[ =t1- (2.55'

At this point all necessary computational forms have

been derived for a performance analysis of a linear continuous-

time, time-varying system and controller. The performance

analysis software implements a time invariant version of the

general form given above. Accordingly, it requires Gcx'

cy' G B ,y Bz and F be specified for Eq (2.23) by the

user in addition to the truth model dynamics equation and mea-

surement equation matrices. The flowcharts and Fortran source

code for this software are in Appendices A and B respectively.

As noted above, this is a general performance analysis

routine and can analyze the performance of any continuous-

time controller. It will be used in this study only to char-

acterize t1ie performance of several different IQG regulating

controllers. To put the LQG regulator into the proper format

for this routine, let x in Eqs (2.23A) and .(2.23z) be the
-C

state es]mate from the Kalman filter such that Eq (2.6)

becomes

bc -f c + B f u + Kf (at - - f xi (2.56)

The subscript "f" indicates a quantity associated with the

Kalman filter. The optimal control law for arn LQG regulator

is u*= -G c. implying from Eq (2.23A) that Gcx=-G*, Gcy= 0,!--C - -

d= 0, and G = 0. Now substituting -his into Eq (2.56), it

becomes

t F +B (-G*k)+K -- f x, (2.57)

24
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matching like quantities from Eqs (2.56) and (2.23B) imDlies

that for the LQG regulator

FG* - Kf jf (2.58)-C f-C

B = Kf (2.59)

Bcy = 0 (2.60)

The flowcharts and FORTRAN source code for the software routine

to put the LQG regulator into this format are in Appendices

A and B respectively.

Enhancing Robustness in Continuous-Time LQG Controllers

An automatic control system exhibits stability robust-

ness when the closed-loop system remains stable even though

certain system design parameters change from their design

values or when other unmodeled variations occur. More

precisely, robustness specifies the finite regions in parameter

space of the desiqn model around a nominal modelin which

stable closed-loop system operation is preserved. Some recent

papers (Refs 5 and 9) deal with robustness only in regard to

parameter variations within the controlled system plant matrix,

robustness actually encompasses all possible variations in

design models that affect closed-loop system stability (Ref 10).

There are many guarantees of robustness for control

systems designed using full-state feedback (Ref 10). In many

cases, however, full-state feedback is not available or is

Vimpractical. In these cases an observer or state estimator

is often used to supply estimates of all the states. While

25



the-e are claims about robustness of systems using observers

in the literature (Refs 12 and 13), J.C. Doyle (Ref 3 , proved

in 19?8 that .there are no robustness guarantees in general.

Since then Doyle and Stein (Ref 2) have developed a technique,

applicable to Linear Quadratic Gaussian continuous-time con-

trollers, that recovers some of the robustness properties of

d full-state feedback system. Their simple technique, which

assumes the n-state plant is controllable, observable, and

has no transmission zeros in the right half plane, requires

choosing the gain for the Kalman filter in the controller in

a particular way.

Doyle and Stein's technique is based on making the re-

turn difference mappings for full-state feedback controllers

and observer based controllers equal. (See Fig 2.3). When

these mappifgs, or loop transfer functions, are asymptotically

equal for the control loops broken at the input to the physi-

cal system (point x in Fig 2.3) then the robustness properties

-of the full-state feedback controller can be .asymptotically

recovered by the observer based controller (Ref ).

The return difference mappings of Fig (2.3a) and (2.3b)

are identical if the observer dynamics satisfy

Kf11 + F (s I -F)' Kf B (s I - F)-- BI- ' (261)

if Yf is parameterized as a function of a scalar q , as Kf(q),

lf(q) B W (2.62)
q
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(a)

Fi 23 ) ul -s at f eB a k b Observer ba e in em t -

2b)

where W is any nonsingular matrix. When this requirement is

*Implemented using a Kalman filter to insure 9table error

dynamics, K f(q) becomes

Kf(q)= P(q) H R-1(.3
_ _ - C

where 'F(q) is used to replace P in the matrix Riccati Eq

(2.13).

Using their technique involves changing the value of

_ Q G- usea in £ 2.123, T h,; c.&Lc _0 tnc z~zr

G Q G Tof the system and Q(a) to be their modified Q to be

used in place of G QG Tin Eq (2.13. They define

27



Q(q) Q + a 2 B V BT " (2.64)
-0

where q is a design parameter and is set as desired. Note

that q= 0 gives Q(q)= Qo. As q approaches -, the robustness

properties of full-state feedback controllers are recovered.

Doyle and Stein state however, that some robustness may be

rwecovered even for small values of q, i.e., for q= 1, 10,

100. In Eq (2.64) the V matrix is also a design parameter

with the stipultion-that it must be positive, definite and

symmetric (Ref 1). Note that Eq (2.63) physically corresponds

to pseudo-noise being added at the points of entry of u rather

than the entry points of the original dynamics noise w(t).

When Eq (2.64) is the basis of calculating the Kalman

filter gain Kf, the steady state covariance equation Eq (2.13)

divided by q2 is

F P + F T + Q + B V BT

- ~-0=2 22 2q q q

- 2 H T PR= 0 (2.65)

then as q -

(2.66)

and
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and also upon making appropriate substitutions,

K -, BVBT (2.68)

2
q

Solutions to Eq (2.68) are of the form

K B v 2 (Rc (2.69;
q

where V* is some square, root of V and R! is some square root

c-of R c. Eq (2.69; is a special case of Eq (2.62) so it follows

that the given Q adjustment procedure in Eq (2.64) will

achieve the desired robustness improvement objective (Ref 2).

in the evaluation cf this technique, several different

values of o are used, \iL. V= i. Choosing / I ailo;:s selec-

tive weighting of the pseudonoise added to each state. A
.Fortran software routine was ritten to provide for -he ad-

justments indicated by 7a (2.64). The flowcharts and FORTRAI

source code are i7n r.prendices A and B respectively.

The Model

The !rodel chosen for the basis of this scudv is the

thrust vector control system for the docked configuration of

J.odule (7K). b aybeck (Ref 8) is the source for this model

-" description and contains a more detailed description. There

is only one uncertain parameter in the system description used

29



and that is the natural bending frequency of the docked com-

bination.

The Apollo CSM/LM vehicle is initially aligned using

small attitude control jets. The main engine is then ignited

a-d the proper attitude is maintained by the thrust vector

control system (TVCS). In addition to this function, the

T*VCS also attempts to counteract any rigid body rotations or

bending motions. This is necessary to minimize the stress

on the docking tunnel between the CSM/LM (Ref 8).

Only the model for the pitch plane with the most signi-

ficant bending mode is used. The rigid body motion for this

system is described by (Ref 8):

* T(Lae + d q 1(t) + (2.7L
(t)= e e q(t) 6(t) w(t) (2.70)I I I

w-h e re

w(t)= rigid body angular velocity with respect to trhe

inertial reference frame

E?(t)= angular attitude relative to inertial space

T= thrust of engine; 22,000 lbs

I= pitch moment of 2inertial of the rigid vehicle;

370,000 slug-ft

L= distance between center of mass and engine;
19 ft

q = slope of bending-mode at the engine station;
-. 13 radian/ft

C d e displacement of bending mode at engine station;
1.1 ft/ft

30
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q(t)= generalized bending c ordinat:

6(t)= main engine nozzle angle relative to the CSY.

w(t)= a-white noise superimposed on 6(t)
The bending mode dynamics are described by the state

variables vb(t) and q(t); the velocity and position of the

generalized bending coordinate. They are related to the other

Cystem variables by

(t)= _2 q(t) - a de [6(t) + w(t)] (2.72)

q(t)= Vb(t) (2.73)

v.where

a= vehicle a~celeration due to main engine thrust;
10 ft/sec

W b= the natural frequency of the bending mode; value

is uncertain

n addition, the main engine servo-mechanism can be modeled

as

(t)= -1o4 6 (t) + 1/f 6 (2
,, 027-( .74 '

v;here

6com = the commanded value of engine gimbal angle;
output of controller

I = lag time constant with which the engine follows
the command; .1 sec

- OM -E Known, for instance as a comLu;6t input (se

Deterministic State Augmentation) then 6(t) is known deter-

ministically; otherwise, if 6 com (t) is random, then 6(t'

will also be random. Note that the peak rate limit of .1

radian/sec will be accounted for in the cost function of the

31
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optimal controller (Ref 7).

The white noise disturbance w(t) occurs as vibration

at the bottom end of the CSM as a result of engine firing.

It is assumed to enter the equations as a. random thrust vec-

tor angle. Therefore, the true nozzle angle is cormposed of

a deterministic portion 6(t) and a statistically random por-

*ion w(t). The mean of w(t) is zero and it has a low fre-

quency spectral density of 0.0004 radian 2 per cycle per sec-

ond. This distarbande could cause a lateral velocity of about

2 ft/sec during a 100 second engine firing (Ref 7).

Combining the above information into a five dimensional

state vector equation, the vehicle dynamics are governed by;

"w(tT " 0 0 0 0.0815 1.13r w(t)

e e(t) 1 0 0 0 0 f(t)

d 70(t) 0 0 G V (t
O Zb "bdtI
q(t) 0 0 1 0 0 q(t)

6(t)j c 0 c c -10 6(t)

C, 1.13

0 &

+ C 6 cor (t; + -11 v(t) (2.75)

0 0

101 0

By processing Inertial r.easurement Unit (iMU) data

wit- a suitable algori-hm, a continuous-iime measurement z kt.

or a sampled data measurement z(t.) can be obtained:
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i

+ z(tU () a o(t + v (t) (2.76)

i) ae~i + ua 50ti) + v,(ti)

where t(t) and q(t) are as before

t(ti)= e(t) at time t= ti

a(ti)= q(t) at time t= ti

v(ti)= discrete-time white Gaussian measurement noise
OW with mean zero and variance 1/12(0.0002)2

radian

v (t)= continuous-time zero mean white Gaussian mea-
-C surement noise of strength approximated by the

strength of v(ti ) times &t, the sample period

over which the measurements were actually made:
R c(ti ) = R(t i ) at"

= slope of the bending mode at the IMU station;a -0.13 radian/ft

Note the approximation to R (t.) is motivated by a derivation

of the continuous-time IQG controller which starts with a

sampled-data controller and then allowing the sample time to

ap-roach zero (zef 8).

in the real system the measurement is made available

once every 0.1 sec. z(t' can be ..ritten in a more compact

form, H x(t) v (t as

r]-- ~ C + v(t) 2.7

q(t)

(- 6(t)J

33
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The following conditions and a nriori kno1ledge are

assumed and are consistent with those used by Mavbeck (Ref 3)

in an adaptive controller for this model. Eqs (2.78A) through

(2.78D) apply to the truth model, and Eqs. (2.79A) and (2.79B)

apply to the controller model.

Wo= 0.08 degree/sec (2.78A)

0o= 0.8 degree (2.78B)

vb = 0.7.ft/sec (2.78C)
o

qo= 0.07 ft (2.78D)

2 2
Wb = (10 rad/sec) (2.79A)

= 0 (2.79B)

The value of w2 in the truth model is set at various values -
2 2 2

90o 100, 11, 200, 300 ...... rad2/sec 2
. Note the *'b in Ea

(2.79A) is the value upon which the controller model is based

and is different from that in the true model. The effect on

controller performance of several different values for - in

the truth model is evaluated (Ref 8). The cost-weightinc

matrices, as soecified in Maybeck (Ref 11) are

4.4(10) 0 0 0 0

0 185000 0 0 0

W 0 0 185000 0 0 (2.80)-xx

0 0 0 1100 0

0 0 0 0 165000j

34



[' . 4 2

-uu =[ (o ]  5

xu [-4.4(10)7 0 (2.8

The entire system is depicted in Fig 2.4. In Fig 2.4

it is evident that the driving noise w(t) does not enter the

state 6(t). Accordingly, then, only four states can and need

re estimated by a Kalman filter in the LQG controller. The

four state models on which the Kalman filter is based is

~W(t) 0 0 0 0.0815 w(t)

1t) 0 0 o o e(t)
d2
dt vb(t) 0 0 0 b W

q(t) 0 0 1 0 q(t)

1.131 () 1.13(.5

-11 1 -11

0 I0

!he deterministic state is handled in the manner described
in the follov.'i.ng section, Deterministic State Augmentation

section.

Deterministic State Augmentation

in some cases, as in the model of i.ne preceding sec7-zcn,

certain states of a controller will be known deterministical!y

as a function of the computed control value. A priori, they

are random, but they are functions of the computed u, which

is not random once computed. If these states are introduced
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Fig 2.4 Thrust Vector Control Dynamics (Ref 8)

36



into the Kalman filter equations, the associated Kalman fil-

ter gain's calculations may become intractable. In particular,

these inputs 4rt not controllable from the entry point of

w(t). It is therefore necessary to remove these states from

the controller design model while generating the Kalman filter.

Following that, they must be augmented again into the controller

m bdel (Ref 11).

Let a controller model and the measurements upon which

it is based be described by

x= F x + B u + G w (2.84)

z= H x + v (2.85,

If there are deterministic states, then the system and 'measure-

ment equations may be put in forms,

+ 
w (2 .8 6 )

z= [1 i2 + v (2.87)

x2

by means of appropriate ordering of state variables. The

vector x of dimension p contains all deterministic states

and the vector x2 of dimension m contains the stochastic

states. The zero matrices in the partitioned F and G matrices

indicate that there is no direct noise inputs into states x

S X is not directlv courled into x1i Note that F_

# 0 allows the stochastic states to be functions of the

deterministic states.
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Now to produce an estimate of x ,  2' a Kalman filter,

for a system partitioned as in Eq(2.86), can be determined

using Eqs (2.2),through (2.13) so that

A

-2= -22 A2 F 21 -xl + B 2 u

. -H (2.88

Note, the Kalman equations require only the m by m F22 matrix

and the m by r G2 matrix (where r is the dimension of w) from

Eq (2.86) in order to compute The Kalman filter gains.

Once the Kalman filter gains Kf are determined, it is

necessary to reform the complete controller model as in

Eq (2.89)

'-X L _2 LE212 B-2

+ (z - (2.89;
-fc

Now the controller will provide values for all controller

states: known values for the deterministic states and esti-

mates of the stochastic states.

Samrled-Data LQG Controller

The following discussion of the sampled-data LQG con-

troller is based on the presentation by Maybeck (ReflO). It

assumes that the underlying physical system to be controlled

can be represented by
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x (t.) ±(ti I t i (ti + ka(ti) it )

+ d(ti') (ti) (2.90)

where i(ti+l t i ) is the state transition matrix and Bd(ti),

9d(ti) and w (ti ) are the discrete-time counterparts of B(t),

G(t) and w(t) described previously for continuous-time systems.

4ote, if the underlying physical system is a continuous-time

system as in Fig (2.5), then Eq (2.90) represents the equi-

valent discrete-time-representation of that system as opposed

to an approximate discrete-time representation (Ref 10).

A sampled-data controller for the system of Fig (2.5)

is an optimal controller in the sense that it minimizes J in

Eq (2.91)

Ej TtN+t f Z(tN+l)

N+ E 2 xT(t i ) 2i(t i ) 2 (t i ) 
+ u (t i ) ii(t i ) 3a(t i )

+2 xT(t.) S(t i ) (t + J t i ) (2.91)-- i=O r

In Eq (2.91) Xf is the cost-weighting matrix for the final

state which occurs at the final time t N+1 ,  (ti ) is the cost-

weighting matrix for the states at time ti , U(t i ) is the cost-

weighting matrix for applying controls at time ti , S(t i) is

the cost-weighting matrix at time ti relating certain con-

trol values to certain states, and J r(ti ) is a residual cost.

Note that the applied control is held constant throughout

each interval between sample times and that no control is

applied at the final time, tN+1.
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I One-sanmnle nemry.r

LQG Feedback Compensator

Fig 2.5 Sampled-Data IJQG Controller (Refl10)

V7hen 7Q (2.90) is an equivalent discrete-time repre-

serntation of~ a system, a complete characterization of the

states and cost can be generated by simultaneously integrating

the differential equations, Eq (2.92) through (2.98) forward

from. time -1-,o t, . (Note G.= I f~or su~ch a reireserntation).

~(t, t~ ) F(t) B(t, t i) + B (t) (2.93)

j(t, t> f(t) g(t, ti) + (t, +: Flt
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M
SYi ) xu + u(t) B(t, ti ,  (2.96)

_§(t. t i): kT(t, ti ) W~xx(t)BF(t, ti)

+ T (t, ti ) Wxu(t) (2.97)

4_(t, t i): tr [Wlxx(t) Q_(t, t i ] (2.98)

Initial conditions for all integrations are 0, except for

!(ti, ti)= I. At the completion of the integration to ti+ 1 ,1.. 1t + - t +

t- desired results are t , > L d )=_9 , ti,

1 1 - -i+1 i) S (t)= T(t 1X(t i)= Z(ti+ I , t i), i_(ti)= ii(ti+ I , t i), S(t i)= S-(t i+1 , ti )

and J r(t.)= r (t i+, ti). The integration must be performed

for every sample period, except in the case of a time invar-

4iant system model with constant cost-weighting matrices and

stationary 1.oise inputs with fixed sampling period, where the

integrations need only be performed once. In this later case,

the i, Bd and G matrices in Eq (2.90) and the X, U and S

matrices in Eq (2.91) are constant matrices (Ref 10).

For a system described by Eq (2.90), the LQG regulator

consists of an optimal deterministic state feedback control-

ler cascaded with a sampled-data Kalman filter as in Fig (2.5).

The Kalman filter provides an estimate of the states. This

ccnditional mean estimate x(t) is descrited by Ea(s 2.99

through (2.99E).

-S
2*(ti)= _ t ,ti i  x +t _ )  + Bd(ti_j) uj(ti_ I )  (2.99A)
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P(t)= (t, t ) p(t T

+G d(t i_1 ) Qd (t i-l G d(t i_ (2.99B)

K(ti)= P(t.) HT (ti )

[H(ti) P(tH) HT(t) + R(ti)]- (2.99C)

xk(t+)= (t-) + K(t.) (t ni.. x (.(.91

+P(t+)= P(t l) -K(t.) H(t.) P(tT ) (2.99E)

The initial conditions necessary for beginning the recursions

indicated by Eqs (2.99A) through (2.99E) are the a priori

knowledge of : and P , that is,

o --O--
(t )= p (2. 100A)

E 0o) -o P  (2.100B

Qd(ti) in Eq (2.99B) represents the covariance of the assumed

zero mean input noise w (ti), that is,

E~~ (QT( d (ti) t.i= t.j*
S-d (2.101)

0 t. t

z. in Eq (2.99D) is the measurement available at time t. and

is of the form

z(ti)= H(t i) x(t i) + v(t i ) (2.102)

where v(t.) is an assumed zero-mean measurement noise of

covariance R(t) , that is,
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S (t t.

Note t -(t) va(t 0 r (.

Note that ](ti) and v(t i) are also assumed to be independent

of each other. The description of the various matrices and

vectors in Eqs (2.99) through (2.103) parallels the continu-

Qus-time case with the exception that there are now two

values for x and P. The value at ti is the value before the
1

measurement at I., z4ti), is incorporated. The value at t+- 1 1

incorporates the new information made available by the mea-

surement at time t. (Ref10).

The optimal deterministic controller to be cascaded

with the Kalman filter in Fig (2.5) is described by

Su(ti) -(t i ) x(t i ) (2.104)

Eq (2.104) assumes perfect knowledge of x(t.) at the sample

time. Since the certainty equivalence principle applies,

x(t i ) can be replaced by _ (t+ ) when knowledge of x(t i) comes

from incomplete noise corrupte measurements. G*(t i) is,-c1

from deterministic QG controller theory (ReflO),

-c(t U(ti (t) K c(til)B(t

[(ti) +cTi c i+6 td(ti)

where K (ti ) satisfies the backward Riccati recursion-c 1

e
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K (t)= X(t+) + (ti+, i) c (ti+ i+l' Ti

L- 1 _Kc(ti+i !t i+, t i )

+ ST (ti)T G*(t i ) (2.106)

K (tN+1)= Xf (2.107)

Flowcharts and FORTRAN source code required to imple-

ment the sampled-data LQG controller appear in Appendices A

and B respectively.

Sampled-Data Performance Analysis

This performance analysis is based on.Fig (2.2), with

the only difference being that a sampled-data controller is

used versus a continuous-time measurement controller. This

performance-analysis scheme is from Vaybeck (Ref 10'.

In this scheme the truth model is represented by

x(t)= Ft(t) xt(t) + B (t) u1(t) + Gt A (t) (2.108)

and the measurements available to the controller are sampled-

data measurements of the form

zt(t. ) =  Ht(t i' x (ti  + v (t ) (2.109)
Wt i t t i t~t

The discrete-time controller, which is similar in form

to Eq (2.23A) and (2.23B), is

ui(t) Gc(t i c(t ) + G c(t i ) zt

p+ G cy(t i ) yd(ti) (2.110A)
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c ( )+ = Jc(t i+ , t i )  X (t i )  +Bc (t i

i+ B ( -z t i

+ Bcy( i I d j  2!-

The primary differences between Eqs (2.23.) and (2.110) are

that the differential equation is replaced by a difference

equation and that the counterpart to z4t) is written itias

opposed to zit i ) (Refl0).

Using a controller as described in Eq (2.110), and an

equivalent discrete-time model for the truth model, the sam-

pled-data performance analysis is very similar to the contin-

uous-time performance analysis where W (t) and ya(t) become

Xa (ti) and y(t.). That is, if in Eqs (2.27) through (2.35)

(t), X (t), t(t), xt(t) Fc(t). Ft(t), are replaced bywe c , t # ''

_(ti+) X(ti), xt(ti+,), xt(t i (ti+1, ti), _ t(ti+l, ti),

respectively. Then F (t) becomes &_(ti+, ti), 1_a(t) becomes
a i+ -

Bda(t i ) and Ga(t) becomes Gd a(t.) where the upper left parti-

tion in G is the identity matrix I, since this is an equi-
-a

valent discrete-time representation. If the'underlying truth

model is a discrete-time system, an appropriate Gd would re-

place the I.

The mean mxa (ti ) and the covariance P xa(t) of the

internal process xa are propagated by

X (ti+l)= !-a(ti+1
' ti)ix (t) + Bd (ti) (t(la a -a (2.111A
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.t )= (t) ' (ti T(ti , ti
-x a 'i+l ti+l PX a  1 - 1+

+ 1 ( ( 'Tj z: ( i) (2.11 !B '--a  d a  --d a  i

The mean and covariance of the augmented vector of desired

quantities, La, are given as a linear combination of the sta-

tistics of xa consistent with the definition of La (Refl0):

--ya G)_cz (t i  H!t(t i) Gac x ti) mxat)

00

t)I (ti (2.112A)
[cy ti )

P Yat) z( t H cx(ti Exa (t i )

- c~i 2 H (ti) G~ iL Z1-t1 c x

0 GT (t.)

[ I
1- R(t.) 1o GT ()T (2.112B)

[ acz(ti)J - -z

Eqs (2.111) and (2.112) will give an accurate descrip-

tion of the desired statistics at the sampled times ti . How-

ever, it is often desired to know the statistics at particular

mcments between sample times. The differential equation for

0~~* xa( ) is

Ya u 0 0 u(t)wt rt)

(2.113)
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Based on Eq (2.113), the mean my(t) ad.. covariance F ('

are propagated between sample times by

[Ft(t) t (t)
-a (t 001my a (t )  (.11A

P (t) -- t Q[ [ -)

0 !Lt) (t) P

-ya _o+Za ii; (t 0

[Gt~t) Qt(t)G T (t) 0

t 01 (2.114B)
0 0

The initial conditions for the sample period beginning at

time ti, come from Eq (2.112). Note that no.Pxa vt(t.) terms

appear in Eq (2.112B) as they do in the continuous-time coun-

terpart, Eq (2.46). This is true when w (ti ) and xa(to) are

assumed independent of v t(t i ) (Ref 9).

The optimal LQG regulator must be put into the form

of Eq (2.110B) to be evaluated. The optimal IQG regulator

'has the control law

u*(t.)= -G*(t.) _(t.) (2.115)

w:ith 0d= 0 the necessary associations are, from Mlaybec'x: (Ref

10),

-cxt1 -c ti) - t i1

2 (t
-CZ
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k7, ( ti)= [L(ti+l, ti) - d(t.) Gc(ti +

• K(t i ) (2.119)

4 B = 0 (2.120)-cy -

qcy= (2.121)

where the ?, B , G* and the filter gain K are those associated-0 C

with the controller design model.

Since there are minor differences between this per-

formance analysis and the continuous-time performance anal-

ysis, only one software routine was written to accomplish

i bch of the e performance analyses. External flags set by

the calling routine indicate to the performance analysis

routine whether it is to perform a continuous-time or dis-

-crete-time performance analysis. Flowcharts'and FORTRAN

source code for the performance analysis appear in Appenices

A and B respectively.

Doyle and Stein Technique in Discrete-Time Systems - 1

This section describes the first approach taken in

this thesis to try to extend Doyle and Stein's (Ref 2) tech-

i fcr enhancing robustness of ccntinuous-time LQG con-

7rollers to sampled-data LQG controllers.

In this approach, the continuous-time LQG developed
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using Doyle and Stein's technique is merely discretized.

IThis discretized controller must be put into the

performance analysis format which requires values for G_cx (ti),

Gcz(ti ) and G cy(ti ) in Eq (2.110A) and I (ti+l, ti), Bcz(t i )

and B (ti) in Eq (2.110B). Since G*(t) is constant, G (t.)
-cy 1 c -cx I

= -Gc where the control law has become u(t.)= -G* x (t.).
-c - C -C 2

Gtz is zero and since yd= 0, so is G . Then for

the controller of Eq (2.23B)

2c(t)= F (t) Xc(t) + Bcz (t) zt(t) + Bcy(t) Yd(t) (2.23B)

xc (ti+l) in Eq (2.110B) becomes

+ [ cy(t ) At Y d(ti) (2.122)

.:here &t is.the sample time and I +(Fc(ti) At) , Bcz (t)At

and B (ti)At are first order discrete-time approximations-cy1

of --c (t.i, ti), B (t i ) and B (t i ) required in Eq (2.110B)

iRef 9). Also note that a discrete-time approximation of

R (t) is required. From Maybeck (Ref 9) an appropriate

approximation, R(ti.), is

R(ti)= R (t.) /At (2.123)
- 1 c a.

Recall that cF Bcy and B are defined in Eqs (2.58)

through (2.60) and are described in terms of the continuous-

time controller model matrices, the Kalman filter gain (which

is calculated using Doyle and Stein's technique) and the

0 deterministic controller gain.
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The Doyle and Stein Technique in Discrete-Time Systems - 2

( 0 This section describes the second approach taken in

this thesis to extend Doyle and Stein's (Ref 2) technique

for enhancing robustness of continuous-time LQG controllers

to sampled-data LQG controllers.

In this approach, a sampled-data LQG controller is

u-sed. In order to apply the Doyle and Stein technique,

2 T in Eq (2.99B) is replaced by 2A. In this controller,i -2d 2d -d

Q the assumed discrete dynamics input noise strength, is

related to Q(q) of Eq (2.64) and is

,_T q2 T
Bd- T B V B At (2.124)

Eq (2.124) is a format similar to using G Q dT of the dontin-

uous-time system multiplied by At as d first order approxi-

mation to Qd (Ref 9). At is the sample period of the sampled-

data controller. Note that the subscript c in Eq (2.124) is

to indicate that the B matrix is the continuous-time model

B matrix.

Flowcharts and FORTRAN source code for the software

necessary to implement this approach appear in Appendices

A and B respectively.

Enhancing Robustness of Discrete-Time Systems by Directly

Choosing K

The third approach to enhancing robustness of sampled-

data controllers involves directly picking the Kalman filter

gain K. This approach is related to that of Doyle and Stein
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for continuous-time systems in> that a similar strategy of

making the return difference mappings for a full-state feed-

back system and an observer-based system asymptotically equal

is used. Fig (2.6a) shows the full-state feedback system

while Fig (2.6b) shows the observer-based suboptimal control

law configuration where u(ti)= -G (t-) instead of the opti-

mal control law where u*(ti)= G* (ti)" Note that the label-

ing in Fig (2.6) indicates that this analysis is done in the

z-domain versus.the s-domain for continuous-time systems

(Ref 10).

The return difference of the full-state feedback and

the observer-based design need to be equal in order for the

observer-based design to recover the robustness properties

of the full-state feedback controller. That is, [i KI is to

* be found such that

* K [ + H (z I 4)_ - 1 -

_-d ( (z I - -) Bd - ( .1 5)

Note that K is the steady-state Kalman filter gain and i is

the state transition matrix. If K(q), parameterized as a

function the scalar q as in the continuous-time case, is

selected such that

Lim 0  B ' (2.126)
q

for any nonsingular m x m W then Eq (2.126) is satisfied

asymptotically. K is thus chosen as 4
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(a)

+ +_

(b)

Fig 2.6 (a) Full-state feedback (b) Suboptimal control law
I u~3(ti = _- 9,(t.-) (Ref 10)

K= q 1 1 LC (2.127)

Now, q and WC can be varied as in the continuous-time case to

achieve the desired degree of robustness. Note, in the dis-

crete-time case, R is chosen directly, as opposed to choosing

a ..'-' In -e contiruous-time case (Eq (2.64) and then cal-

culating a K based upon the solution to the matrix Riccati

Eq (2.13) (Ref 10).

IYaybeck (Ref 10) indicates there are many possible

0 choices of W in Eq (2.127) above but that one particular
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choice is motivated by considering the dual state equations.

'I This choice, Eq (2.128),

w= B d) (2.128)

assigns m eigenvalues of the closed loop system to the origin

and the remaining (n - m) eigenvalues to the invariant zeros

df the system for a system of n states and m inputs.

In order to use the performance analysis algorithm,

the suboptimal 6ontrol law must be put into the proper format.

The proper format, from Maybeck (Ref ID), is

Gcx(ti ) = -G (t i )  (2.129A)

,cti1 ti)= k(ti+, t i ) JI - Kyt i ) Hi(ti)]

-cx i -c i1- -

- Y(ti) -*(ti) (2.129B)

Bc (ti)= _(ti+I t i ) K(t i ) (2.129C)

G cz(ti)= B cy(ti)= G cy(ti)= O (2.129D)

wheret t) Bd(ti) G*(t.) and the Kalman filter gain
1~ -d ti -c

K(t.) are those associated with the controller model.

Flowcharts and FORTRAN source code for the software

necessary to accomplish this choice of W and to vary the

parameter q appear in Appendices A and B respectively.
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III Results and Conclusions

I
Introauiction

This chapter discusses the results and conclusions of

this study, based on data generated by the interactive computer

program written to support this study (see Appendices A

tnrough E for program description). There are several items

about the following discussion that need to be addressed at

this point. First, the following discussion of the various

controllers and performance enhancement techniques includes

data obtained for the software verification models (Test

Cases 1, 2 and 3) that are introduced in Appendix D. Second,

the Apollo model state vector was rearranged to meet the

software requirements for handling the deterministic state

(see Deterministic State Augmentation Section of Chapter II).

In this rearrangement the original states 1, 2, 3, 4, and 5

become states 2, 3, 4, 5, and 1 respectively, that is

T T= - (3.1)

Third, when discussing the results obtained for the Apollo

model only states 1 and 4 (6 and vb) will be used to demonstrate

performance since the behavior of states 2 and 3 is similar

to that of state I and state 5's behavior closely resembles

that of state 4, which is the state most direclty affected

by changes in " Fourth, even though the time histories of

the mean and covariance of the states and controls form the

q primary basis on which to judge closed-loop system performance,
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the eigenvalues of each closed-loop system are computed and

9 examined to determine stability (prior to running the mean

and covariance analysis). Last, the matrix design parameters

V and W in the two performance enhancement techniques are

always 1-by-i matrices for the applications considered. They

are thus always set to 1 since any desired change can be

atcomplished by adjusting the appropriate scalar design

parameters. The order of the discussion is continuous-time

controllers fir!t, discretized continuous-time controllers

second, sampled-data controllers third and finally remarks

about some general trends applicable to all three-controller

types.

4P Continuous-Time Controllers

The steady state performance of the continuous-time

controllers without first applying the Doyle and Stein

technique for the three software verification test cases is

presented in Table D.2, Appendix D. The steaay state

performance of the controller for the Apollo model is displayed
2

in Figs 3.1 and 3.2 for wb of the truth model set at 100 and

400, respectively (wb in the controller design model is set

at 100 for all cases). Figs F.1 through F.3 of Appendix F

show Apollo model performance for several other values of

2
b' Note from these Figs that the closed-loop Apollo system

is unstable for 2 < 50 and 2 > 400 (evident in state 4
b - bh.

only for this last case).
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'1

When the Doyle and Stein technique is applied to Test

Cases 1, 2, and 3, the performance is improved in the sense

that the density functions are more tightly packed around the
2

mean values (state estimates known more precisely) as q

(the Doyle and Stein scalar design parameter) becomes large;

see Table 3.1. This is indicated by the fact that surfaces

of constant likelihood, planar ellipses in the two-dimensional

2
case, contain less area as q increase where the area is

directly proportional to the product of the eigenvalues of the

steady-state covariance matrix, P (Ref 9). (A quick check,

applicable in the two dimensional case, is to conpute the

value of P11 P2 2 - P1 2  since this value is the magnitude of

the two eigenvalues of P multiplied together. Note, in all
2

cases presented here, the P1 2 is a negligible term and thus

only values-for P11 and P22 are given in the tables that

follow.) By examining Table 3.1, Doyle and Stein's claim

that their method moves some of the filter poles toward stable
-~ 2

plant zeros and the rest to - (asymptotically as q becomes

larger) can be verified.

Note that the Apollo model used in Table 3.1 includes a

damping factor, , of 0.001 in the bending mode dynamics

(i.e., the 3, 3 term in the F matrix of Eq (2.75) is no longer

0 but becomes -2b. A damping factor was added because no

noticeable performance improvement could be obtained with

0 (which places a set of poles for the bending mode dynamics

on the imaginary axis) and it was anticipated that moving the
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poles away from the imaginary axis might allow the Doyle and

Stein technique some extra "maneuvering room" in which to

bring about stehdy state performance improvement. Several

damping factors between 0.001 and 0.15 were tried to see if

steady state performance could be improved but no noticeable

improvement was obtained for any value tried. (No values

)arger than 0.15 were tried since C= 0.15 is already 10 times

larger than that in the actual Apollo system.)

Table 3.1 shows only marginal improvements in closed-loop

stability for the Apollo model as q increases until some

critical value is reached (approximately, q2= (701)2) at which

closed-loop stability is lost. Note that one of the filter

poles is positive for q2 < (701)2, the stable closed-loop

system case, and that the filter poles do not migrate as Doyle

S2 2and Stein suggest but abruptly, at q > (7 0 1 ) , change to the

configuration where some are co-located with system zeros and

the rest have larger negative real parts. At this point

closed-loop system stability is lost. It is~noted that in the

case of the Apollo model, the Doyle and Stein techniques adds

white noise in the system before the first order lag (where

noise did not previously enter) instead of after it and this

may affect the resulting performance of this technique. This

phenomenon should be investigated further.

Table 3.2 presents the results for Test Cases 2 and 3

when the strength of the continuous-time noise Q is "tuned"

by adding a LQ which is a simple scalar multiple of Q. AQ is
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fTable 3.2
Steady-State Performance of

Continuous-Time Controllers with'Tuning
of Q by Adding A0

Test Q, 4Q Steady-State Filter
Gase PT P Poles

-5__ tt uu

2 10, 1 4.4(10) , 6.1(10)- 2.3 -9.6±j9.1

2 10, 100 2.9(10) - 5 , 5.0(10 - 3  5.0 -40±j40

2 10, 1000 1.9(10) - 5 , 4.7(10) -3  79.6 -125±j125

3 1, .1 219 , 2091 4..3(10) 4  -7.25±jl.7

3 1, 1 210 , 2229 6.5(10) 4  -11.3, -6.6

3 1, 100 179 , 2784 6.7(10) -90, -5.9

3 1, 1000 173 , 2914 7(10)6 -9000, -5.8

3b  1, 10 o c -28.0, -5.99

3b  1, 10000 o c -900, -5.90

3b  1, (10) 6  M 0 -9000, -5.90

a) Only diagonal terms Pill P 2 2 shown.

b) Truth model F matrix deliberately mismatched with controller
design model; Ft2 = -100. Test Case 2 not shown; it alsot,2

could not be stabilized using this tuning procedure.
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chosen such that it approximates the value of noise added by

the Doyle and Stein method. Tuning Q in this manner adds noise

at the pointsoT entry of w into the system dynamics instead

of at the point where u enters as in the Doyle and Stein

technique. (Test Case I is not displayed because there is no

physical difference between the Doyle and Stein technique

And this tuning procedure for this case.) Comparing the results

for Test Cases 2 and 3 shows that there is not much improvement

from one method to the other for Test Case 2, but that there

is a noticeable difference for Test Case 3. Note, when the

closed-loop system of Test Case 2 was made unstable (by

changing entries for the F matrix) in order to show robustness

effects, that neither procedure (Doyle and Stein or adding AQ)

- could re-stabilize the closed-loop system. For Test Case 3,

the Doyle and Stein technique gives better results in the sense

that the surfaces of constant likelihood, contain less area

indicating that density functions are more tightly packed around

the mean values. This approach was not appl.ed to the Apollo

model since the results of the Doyle and Stein appruach were

poor.

As far as the Test Cases are concerned, the Doyle and Stein

technique appears to be a valid approach to improving the

performance of continuous-time systems even for values of q

less than . For Test Case 3 this technique is superior to

tuning the Q matrix by adding a AQ as a simple scalar multiple

of 0. In this case, the tuning procedure adds noise in both
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state equations, but the Doyle and Stein technique adds noise

only to the second state equation, where the control input

exists. In contrast, either procedure adds noise at the

control input for Test Case 2 due to configuration of the

B and G matrices in the test case. As for the more complex

Apollo model, the results are inconclusive. While some

mrtrginal improvement could be seen for large q2 and w2= 400,

the total behavior of the system was not as expected. In

particular, thebehav ior of the filter poles, as discussed

previously, was not expected, especially since when the poles

were in the desired positions, closed-loop stability was lost.

Discretized Continuous-Time Controller

_The results of discretizing each controller without first

applying thF Doyle and Stein technique are presented in Table

D.2 of Appendix D. Examination of the entries in this table

reveal that the discretization process gives better results

for smaller sample periods, as expected since the first order

approximations used are valid for small (relative to charac-

teristic times of the basic system) sample periods (see the

Doyle and Stein Technique in Discrete-Time Systems - 1 in

SChapter II). Sample periods chosen for the robust versions

of these controllers were those for which the unmodified

controllers had essentially the same steady-state performance

as their continuous-time counterparts. Table 3.3 presents the

results for the discretized controlleis for Test Cases 1, 2,
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, Table 3.3

Steady-State Performance of
Discretized Robust Controllers

Test 2 b Steady State
Case At q Pxtx a Puu

1 .01 1 1.78 .120

1 .01 10000 1.48 12.4

1 .01 (500)2 1.47 194

1 .01 (1000)2  O cc

2 .001 100 2.01(10)-5, 4.79(10) 71.5

2 .001 (25)2  1.86(10)- S, 5.55(10)- 3  305

2 .001. (49)2 1.77(10) - 5 , 6.78(10) - 3  953

2 .001 (50)2 -

3 .001 1 221 , 2122" 4.7(10)4

3 .001 100 235 , 1814 2.9(10) 4

3 .001 (100)2 316 , 1192 7.3(10) 4

3 .001 (1000) 2  CD
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Table 3.3 (Cont)

Test 2 Steady-State
Case t q b P a P"x t xt  uu

1c  .001 0 00 00

Ic  .001 1 00 00

1 .001 100 12.0 2.44

1c  .001 (1000)2 7.33 128

3 .001 0 00

3 c  .001 (1.,0 00

3c  .001 10000 1025, 554 4.99(10)6

3 c  .001 (1000)2 1533, 262 2.16(10)6

a) only diagonal terms Pill P2 2 shown.

b) q2 is the Dcyle and Stein scalar design parameter.

c) F matrices changed in truth model description to show
robustness. For Test Case 1, Ft = 0.1; for Test Case 3
F = -100. Test Case 2 could not be stabilized once a

2 ,2
destabilizing F was chosen.
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and 3 when the Doyle and Stein technique is applied. Comparing

the results for Test Cases 1, 2, and 3 shown in Table D.2 and

3.3 shows that Ziscretizing a continuous-time controller to

which the Doyle and Stein technique has been applied produces a

discrete-time controller with enhanced performance up to a

certain value of q

The Apollo model presented difficulties in this case

also. In fact, no matter how small the sample time was made

(periods down to 0.001 sec were investigated), the resulting

closed-loop system was unstable indicating that the first

order approximations were invalid. To improve the situation,

a damping factor was again added in bending mode dynamics as

in the continuous-time case. The initial choise of C= 0.015

and sample periods <0.01 sec allowed the resulting discretized

2
continuous-time controllers to remain stable even though wb

was varied passed 400 which was the desired value about which

to investigate performance. By trial and error and noticing

trends in the data (the interactive computerprogram was well

suited to this task) a suitable combination of sample period and

damping ratio was found. With a = 0.01 and sample period

of 0.01 sec, a discretized continuous-time controller that

was initially unstable at wb= 400 could be made stable by

applying the Doyle and Stein technique before discretizing.

Values of q2 between (100)2 and (0.001)2 were tried and
2= (00) 2

q (0.02 selected as the value that gave the best performance.

In fact stable closed-loop operation occurs only for
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2 2 2(0.005) < q < (0.05) The fact that there is an upper

limit on the value for q2 is an aspect that is not seen in

the continuous-time case. Fig 3.3 shows the performance of

the unstable unmodified discretized continuous-tine controller.

Figs 3.4 and 3.5a show the performance of the discretized

controller after the Doyle and Stein technique is applied

2= (012 2 2where q (0.1) For q = (0.02) the results are shown in

Figs 3.5b and 3.6. It is quite evident from these Figs that

applying the Doyle and Stein technique can cause dramatic

improvements in performance.

Thus, applying the Doyle and Stein to a continuous-

time controller and then discretizing the res.ult to produce

a robust discrete-time controller, appears to be one acceptable

approach to extending the Doyle and Stein technique to discrete-

time controllers. Note however, that since the discretization

process requires appropriately small sample-times, it is

anticipated that there will be some cases where this technicue

cannot be applied readily. The Apollo model is a good example

of this since in the actual Apollo system the sample period

is 0.1 secs which is 10 times slower than that which produces

a stable closed-loop system. One other item to note at this

point is that the interactive computer program is well suited

to any tuning (trial and error) that may be required. In fact,

the author accomplished the tuning described above in several

hours of interactive computer-time, whereas it probably wculd

have taken several days using batch processing.
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damping ratio= 0.01

0

0"-'.0O0 14.29 28.57 42.86 57.14 71.43 55.71 2G0. 00

secs

a) variance of state 1

damping ratio= 0.01
,-tDbC-

0.-', 00 14.29 2i.57 42.86 57.14 71.43 35.71 100.00

secs

b) variance of state 4

Fig 3.3 Discretized continuous-time performance.with Jb=400 in
the Apollo model.
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CO.

C,,

S 14.29 2i.57 42.85 67.14 71.43 B5.71 100.00

secs

a) control variance when q
2 =0.01

9,o.

0

CO,

I

0.0 - 14.29 2i.57 42.86 S7.14 71.43 85.71 100.00

secs

b) control variance when q
2 =0.0004

Fig 3. 5 Discretized continuous-time performance with 2=400

and q2=o.01 and o.0004 (control variance)
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Sampled-Data Controllers

This section presents the results and conclusions

concerning the performance of the robust sampled-data controllers

developed in this thesis. A discussion in the effect of

applying the Doyle and Stein technique (as extended in the

Enhancing Robustness of Discrete-Time Controllers - 2 section

(;f Chapter II) appears first, followed by comparison with the

effects of tuning the Q matrix (by adding a LQ as in the

continuous-time discussion). Last there is a discussion of

the results for picking the Kalman filter gairZ, directly

(see appropriate section of Chapter II).

Doyle and Stein Techniques Extended to Sampled-Data

Controllers. The steady-state performance of the sampled-

data controllers for Test Cases 1, 2, and 3, with no robustness

enhancement, is shown in Table D.3 of Appendix D. Note here

that, as for discretized continuous-time controllers, the

sample period can greatly affect the steady-state performance.

The performance of the sampled-data controller for the Apollo

model, with no robustness enhancement and for several different

2.values of w, is presented in Figs 3.7 and 3.8 and Figs F.4

through F.6 of Appendix F. As in the continuous-time case,
2b < 50 (although thisthe closed-looo system is unstable for wb 2--0(atoghti

is not shown in the above Figs). In the sampled-data case

2
instability also occurs when wb > 200. (Note 0.1 secs is the

chosen sample period for the Apollo model since this value

gives good performance and is the same as that used in the

actual Apollo controller).
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The steady state closed-loop performance with the Doyle

and Stein technique applied is presented in Table 3.4 for Test

Cases 1, 2, and- 3 and in Figs 3.9, 3.10, and F.7 through F.10

for the Apollo model. Comparison of the results presented in

Tables 3.3 and 3.4 shows, for Test Cases 1, 2, and 3, that the

steady state performance is enhanced as q 2 increases in the

sense that areas of the ellipse representing the surfaces of

constant likelihood become smaller (see related discussion of

these surfaces 3Tn the Continuous-Time Controller section of this

chapter). For the Apollo model the results are similar. Figs

3.9 and 3.10 show stable closed-loop operation for w= 400

Pand 700, respectively, while Figs 3.7, 3.8 and F.6 indicate

that the closed-loop system with an unmodified controller is

22
unstable for Wb > 300. By examining Figs 3.9, F.7 and F.8,

one can see-that there is a value of q2 (in this case between

(0.1) 2 and 1.0) beyond which increases in q2 produce no

noticeable difference.

, As in the continuous-time case, a compaeison is made

between the Doyle and Stein technique benefits and those benefits

obtained by tuning the Q matrix by adding a scalar multiple

of Q, LQ. Also as in the continuous-time case AQ is chosen so

as to approximate values of q used. When this technique is

applied to Test Cases 1, 2, and 3, the performance could be

made similar to that obtained by applying the Doyle and Stein

technique as shown by comparing the results in Tables 3.4 and

3.5. In contrast, Figs 3.11 and 3.12 show the performance
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Table 3.4

Steady-State Performance of
Sampled-Data Controllers with Doyle and

Stein Technique Applied

Test 2 b Steady State
Case At q P xtxt a Puu

1 .01 .a 1.79 .105

1 .01 1 1.78 .119

1 .01 100 1.58 .900

i 1 .01 (1000) 1.46 61.5

2 .01 .01 4.00(10) .5 6.0(10) .3  2.28

2 .01 1 2.70(10) -5  5.1(10) -  5.11

-5 -2 .01- 100 1.75(10) - 
, 5.4(10) -  51.8

-5 32 .01 10000 1.65(10) , 6.4(10) 110

.2 .01 (1000)2 1.65(10) - 5 , 6.4(10) - 3  113

3 .01 .01 341 , 1108 655

3 .01 1 341 , 1108 652

3 .01 100 349 , 1078 473

3 .01 10000 316 , 1193 774
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Table 3.4 (Cont)

Test q2 b Steady-State
Case At qP x ta P U

44 1c  .01 00 C

1Ic  .01 1 c

I c  .01 100 12.0 2.43

1c .01 (1000)2 7.35 63.0

3c  .01 0 c

3 c .01 100 mo

3 .01 (100)2 996, 551 4.96(10)6

3c  .0-1 (1000) 2  1554, 257 2.03(10) 6

a) only the diagonal terms Pill P22 are shown

b) q2 is the Doyle and Stein scalar design parameter

c) F matrices changed in truth model descriptions to show
robustness. For Test Case 1, F.= . for Test Case 3,
F = -100. Test Case 2 choul not be stabilized once
t ,2
a destabilizing F was chosen.
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Table 3.5

Steady-State Performance of Sampled-Data
Controllers When Q is Tuned by Adding AQ

Test Steady-State
Case At Q , Q Ptxt a P uu

1 .01 2 , 1 1.73 .156

1 .01 2 , 100 1.53 1.97

-5 -3
2 .01 10, 1 3.92(10) 5.69(10) 2.68

2 .01 10, 100 2.52(10) -5 5.02 (,10)-3 6.22

2 .01 10, (10) 4  1.67(10) 5 , 5.90(10) -3  80.3

6 -5 -3
2 .01 10, (10) 1.56(10) , 8.47(10) 231

3 .01 1 , .1 340 , 1110 672

3 .01 1 , 1 337 , 1122 782

3 .01 1 , 100 325 , 1163 2390

43 .01 1 , (10)6 324 , 1169 4800

3 .01 , (10) 323 , 116949
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Table 3.5 (Cont)

Test Steady-State
Case At Q , AQ P a P

x txt uu

i b  .01 2, 0 00

ib  .01 2, 1 Largec Largec

Ib  .01 2, 100 9.33 3.43

01 - 2S  .01 2, (1000)2 7.34 72.1

3b  .01 1, 0 00 00

3b .01 1, 100 00

3b .01 1, (10) 4  00 00

3b .01 1, (10)8 00 00

a) only the diagonal terms P 1 1 P22 are shown

b) F matrices changed in truth model descriptions to show
robustness. For Test Case 1, F = .1; for Test Case 3
F t  = -100. Test Case 2 not shown, but it could not

2

be stabilized using this technique once a destabilizing
F matrix was chosen.

c) Steady-state not rached during length of simulation,
but eigenvalues are within the unit circle.
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of the Apollo system when the Q and LQ tuning procedure is

used. Note only the mean of state I and variance of state 4

are shown but al states exhibit similar behavior. Note, from

Figs 3.11 and 3.12, that no matter what value of AQ was added,

there was lirtle or no orforarce benefit. While the largest

AQ shown in Figs 3.11 and 3.12 is 10,000, larger values were

tried but the closed loop system eigenvalues rapidly moved

outside and away from the unit circle resulting in even more

unstable closed7loop-operation.

Based on the above comparisons and discussion, the

extension of the Doyle and Stein technique to sampled-data

systems provides a valuable tool for performance enhancement

in the face of uncertain parameters in the controller design
2

model. For the Apollo model, values of q as small as 0.0001

effectively created a stable closed-loop system as shown in
2

Fig F-9. (For q > 0.01 the increase in stability appears more

dramatic at first glance, Figs 3.10 and F.9, but this is partly

due to a much larger initial transient that o ccurs when q2

increases.) Tuning 2, by adding a zQ, that is a scalar

multiple of Q, had little effect on the Apollo model since

this did not add additional noise at the control input as the

Doyle and Stein technique did.

Robustness Enhancement by Directly Picking K. In

general the results from this tezhnicue were unsatisfactory.

For Test Case 2 and the Apollo model, there were no combinations

of the scalar design parameter q (see the applicable section of
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Chapter II) and sample period that produced stable closed-

loop systems. The results for Test Cases 1 and 3 are presented

in Table D.3 ofr Appendix D. Test Case 1 is the only case used

in this study for which this technique provided performance

enhancement. For Test Case 3, using the areas of the ellipsoids

representing the surfaces of constant likelihood as the basis

of comparison, shows that the performance actually degraded

with increasing q. (Recall that the product of P11 and P22 as

given in Table D.3 is directly related to these areas.)

One possible cause for the failure of this technique

to produce stable closed-loop systems is that the suboptimal

control law u(ti)= -G* x(t.) was chosen as the basis of the

controller instead of the optimal control law u(t.) = -G* x(tt).1 -c- .

The case for the optimal control law should be investigated.

Another posEibility is that there is an as yet undetected

error in software used to implement this controller despite

thorough testing and validation. In any event it is noted at

this point that there are no stability guarantees for this

method of choosing K as there are for the LQG controller when

K is obtained as a result of solving the appropriate matrix

Riccati equation (Eq C.18 of Appendix C for example).

Remarks

Closed-loop system eigenvalues were determined for each

control system designed and were the primary basis of claims

about closed-loop stability. Although these eigenvalues indicate

8
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stability, they do not directly provide performance charac-

eristics versus time of each controlled system. This

information is obtained from the mean and covariance analyses

developed in Chapter II. Both performance measures have

been presented here to provide an adequate portrayal of system

characteristics.

Another item of a general nature and applicable to all

the modified controllers, whether continuous or discrete-time,

is that as the noise level is artifically increased in the

system (via Doyle and Stein technique or by tuning Q by adding

LQ) the control variable variance generally increases (implying

increased control costs are incurred for increased robustness,

which is not surprising) . This fact should be considered in

any design attempting to apply the techniques for enhancing

robustness +hat are discussed in this thesis.

One final note involves the performance of Test Case 2.

This system did not behave "nicely" during the course of this

investigation. It could not be made stable when picking the

Kalman filter gain directly and it could not be stabilized

(using either of the two procedures tried here) once the F

matrix was changed to destabilize the closed-loop system for

robustness studies. The performance of this Test Case should

be investigated further and characterized.
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IV Recommendations

The recommendations fall into two main categories. The

first deals with the basic nature of robust control systems

and the second deals primarily with increasing the utility of

the interactive computer program developed to support this

study.

Basic Investigation -

The first item that requires further investigation

and explanation is the fact that the Doyle and Stein technique

did not provide noticeable performance enhancement for.the

continuous-time Apollo system. There.are two aspects about

this particular model that may have affected the results. The

first is that there is no damping in the bending mode dynamics,

which places a pair of poles on the imaginary axis. An

attempt to allow the Doyle and Stein technique more "maneuvering

room" by moving these poles off the imaginary axis (non-zero

damping factor) was tried but was not successful. The second

is that for the unmodified continuous-time controller, noise

enters only states 2 through 5 but when the Doyle and Stein

technique is used, noise now enters before the first order

deterministic lag and thus into all 5 states. The effects of

this aspect on the Doyle and Stein technique need to be

characterized.

A second item is that, for Test Case 3, one of the

LQG controller poles (eigenvalues of F - B G* - K H)
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is positive but the closed-loop poles are all negative and

thus the closed-loop system is stable. This phenomenon has

been observed.btfore by C.D. Johnson ("State-variable Design

Methods May Produce Unstable Feedback Controllers", Inter-

national Journal of Control, 1979, Vol 29, No. 4, 607-619)

and should be investigated and characterized. Another phenomenon

that should be investigated is the fact that there are upper

limiting values on q2 (in the Doyle and Stein technique) beyond

which the discretized continuous-time and sampled-data controllers

no longer cause closed-loop system stability, something not

observed for the purely continuous-time case.

The results for picking K directly were unsatisfactory

and this approach whould be investigated further. The

investigation should include the possibility of using the optimal

control law~u(ti)= -G* x(tt) as the basis of the formulation.
- C 1

As mentioned previously, there are no guarantees of closed-

loop stability (even with no mismatch between the design and

truth models) when this method is used, unlike the case of

using the optimal gains from LQG controller synthesis methods

(when there is no mismatch of design and truth models).

For the cases where good results were obtained, exten-

sions should be attempted. The possibility of adding time-

correlated noise in a fashion similar to that of Doyle and Stein's

technique for adding white noise should be investigated. The

results would have potential applications in cases where the

noise process is known to be frequency limited. Thus the

controller would only expend extra control energy over a
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specific frequency band,:idth to achieve robustness instead of

over the entire frequency spectrum as is the case for white noise.

In addition, the results of extending these techniques to a

more general purpose controller, (as opposed to the simple

regulator used here) suzh as a Command Tracker Generator/

Proportional Plus Integral Plus Filter Controller, should be

investigated (Ref 10). Also the performance benefits for other

specific applications, such as in aircraft flight control systems,

should be investigatd.

Program Imorovements

Since the program is interactive and the CYBER remote

terminals limit the amount of memory that can be used at AFIT,

the size of the systems that the program can currently handle

is restricted to less than eighth order systems. Two approaches

can be taken to alleviate this problem. One would be to rework

the current interactive program to use several of many

available techniques to streamline/optimize the source code

so as to reduce core memory requirements. Use of FORTRAN

overlay structure, reworking the system model storage in

conjunction with limiting the allowable number of inputs and

outputs are several of the potential techniques that could be

uced. (See Appendix C.) A second approach would be to produce

a non-interactive version to handle high order systems.

There are several ether items that could be changed

and/or added to make the program more useful. One is to

9 provide a better discretization technique for producing the
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discretized continuous-time controller in order to remove some

of the negative effects that the discretization process has on

controller performance when the assumption used in the first

order approximation (small sample period compared to system

characteristic times) is not valid. A potentially useful option

would be to provide plots of the time histories of the mean

tracking errors versus just plotting the means of the states.

This could be accomplished relatively easily since the perfor-

mance analysis !oftware currently propagates the state estimates;

it just does not store them for plotting. Note this would be

useful in making comparisons with data available in the

literature since tracking error data is used widely for. compar-

isons. Another potentially useful option would be to provide

time histories of the sampled-data mean and covariance between

sample-time which would provide additional insight into system

performance. The current time history data provides no

information about system behavior between sample periods and

thus the possibility of aliasing errors exists. Finally, an

option to compute the eigenvalues of the steady-state covariance

matrix, P , would be useful in evaluating the closed-loop-txt
system performance of various controllers as design parameters

are changed since they are directly related to the areas of

the surfaces of constant likelihood.
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A-prendix A

Software Flow.charts

This appendix contains flowcharts of the software

developed during the course of this thesis. In this appendix,

acronyms such as _Q?, CKFfl and DTCO are the subroutine

names as they appear in the FORTRAN source code. When these

acronyms appear beneath the lower right corner of a block in

the flowchart, this indicates that the functions in that box

are performed by the-given subroutines. All such subroutines

have their own flowcharts and descriptions. Flowcharts begin

with a subroutine or program name and end with a return, end

or stop. Each subroutine description has a reference to the

corresponding flowchart number in parentheses next to the

subroutine title.

LQGR? (Fig A.1)

LQGRP is the main program name. IQGRP sequences the

three primary program modes. The first primary mode is for

inrut, il matrices/vectors associated with the controller

model and truth model are entered when LQGRF is in The input

mode. The second primary mode develops and formats for per-

formance analysis, either a continuous-time or sampled-data

controller depending on a user input. The last primary mode

in IQGRP is the performance analysis. The performance analy-

sis is a covariance analysis as described in the body of the

thesis for continuous-time and sampled-data systems.
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INFUT. (Fir 'i.2)

The subroutine 1*7PUT, the first primary mode of LQGFP,

allows the user to input or output system model matrices for

the truth model and controller model. In addition, it allows

the user to specify cost-weighting matrices needed for optimal

LQG controller computation. The subroutine INPUTM is entered

at the beginning of each simulation run. Each time it is en-

tered, the user can select to change and/or print any, all

or none of the matriees or portions of any or all matrices

by choosing appropriate options. One set of options specifies

a particular matrix or vector, the other set specifies what

to do with that matrix or vector. The options are listed in

Table E.1 of' Appendix E.

Two additional options in this routine allow the user

to store all .arices, and subsequently retrieve them from a

local file that can be stored as a permanent file upon program

termination. This option is especially useful for systems

of large dimension that will be used during f*any different

sessions of running the program. The user merely has to at-

tac , the permanent file created during a previous run and

execute one option to recover the entire set system matrices.

Normal program termination can only be accomplished when in

the input mode. Program termination is accomplished by s-ec-

ifying any .atrix/vector optior and then specifying an inpu7/

outnut o-tion of zero.
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RGS (Fig A.3)

The subroutine RGS, directs the development and

formatting of LQG controllers for performance analysis by

subroutine PERFAL. Based on a user input, to select either

a continuous-time, discretized continuous-time or a

sampled-data LQG regulator, RGS calls the appropriate

s11broutines CLQGRS or DLQGRS necessary to compute the

various quantities associated with each type controller.

After the desirgd controller is properly formatted, RGS

calls subroutine FRMAUG to form the augmented system

matrices as described in the performance analysis sections

of this thesis. Eigenvalues of the closed-loop system.are

computed (See subroutine MEIGN) if the user wants to see them.

PERFAL (Fig-A.4)

The subroutine PERFAL performs the performance analysis

as described in both performance analysis sections of this

thesis. PERFAL uses the flag, IFLGSD, which-is set in the

subroutine RGS, to determine whether to perform a continuous-

time or discrete-time system performance analysis.

CLQGRS (Fig A.5)

The subroutine CLQGRS, called by RGS, performs the

computations to specify a continuous-time LQG regulator

and format it for performance analysis. CLQGRS calls sub-

routine CKFTR to calculate steady-state Kalman filter gain

K, and calls CDTCON to compute the optimal steady-state
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feedback gain matrix, G*. Eigenvalues of the truth model F
-c

matrix, the controller model F matrix, [F. - Kf Hf] (filter

poles), - Br G*] (LQ controller poles) and [F - Bf G*f - c  C

Kf Hf] (LQG controller poles) are calculated if the user wants

to see them (MEIGN).

MEIGN (Fig A.6)

The subroutine MEIGN is called by CLQGRS to compute

and then print the eigenvalues of any given square matrix.

CKFTR (Fig A.7)

The subroutine CKFTR is called by CLQGRS to perform

the computations for determining the steady-state continuous-

time Kalman filter gain K as in Eq (2.13). This subroutine

deletes deterministic states from the filter equations as

described iD the Deterministic State Augmentation section

of this thesis. In addition, the user may select to use

the Doyle and Stein method to enhance robustness of the

bontroller. This is done through a call to qubroutine DAS1.

DASI (Fig A.8)

The subroutine DASI, when called by CKFTR, gives the

user the necessary design options to perform modifications to

the Kalman filter gain calculations that are described in the

Enhancing Robustness in Continuous-Time LQG Controllers section

of this thesis. The user selects the scalar design parameter,

q, and the matrix design parameter, V, and then must select

to calculate the modified Q(q) matrix. After observing the
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modified Q(q) matrix the user ban select either to exit the

routine or recalculate Q(q) with new parameters. Note, the

user may chose any option at any time in this routine and

therefore must insure that values are chosen for q and V

.ricr to calculating _(q) and that Q(q) is calculated prior

to leaving the routine.

a

CDTCON (Fig A.9)

The subreutine CDTCON is called by CLQGRS to perform

the necessary calculations to obtain the continuous-time op-

rimal steady-state feedback gain matrix, G* as described by-c

Eqs (2.10) and (2.14). This subroutine makes provision for

non-zero cross cost-weighting matrices by calling the sub-

routine PRIMIT. PRIMIT supplies an equivalent transformed sy-

stem of equations in which the cross cost-weighting terms are

zero. This transformation is necessary because the matrix

Riccati solver can handle only those systems of equations

*with zero cross cost-weighting matrices. A discussion of the

transformation is in Appendix C.

MYINTG (Fig A.10)

The subroutine MYINTG is called by RGS and DLQGRS.

It trovides an equivalent discrete-time representation of

any given set of F, B, G and Q matrices. That is, it computes

an returns thp state transition matrix 0 based on F. it

computes and returns Q. the discrete-time representation of

Q, which is an integral function of , G and Q. In addition,

103



C.-ED

-~--- L jj~ orc_ r arrcN

I (Eq (2.123))j

104



it computes and returns B, which is a function of B and the

integral of f. See Fig A.10 for the equations used in this

calculation.

DSCRTZ (Fig A.11)

The subroutine DSCRTZ takes an appropriately formatted

Qfrom CIQGRS) continuous-time LQG controller and discretizes

it using the first order approximations described in the

Doyle and Stein-Technicue in Discrete-Time Systems - 1 section

of this thesis. These approximations are then properly format-

ted for the performance analysis routine. In addition, this

subroutine computes and then formats for performance analysis,

an equivalent discrete-time truth model and, if appropriate,

the discrete-time approximation Rd= R t where At is the

sample time and Rd is the discrete-time approximation to R0,

the strength of the continuous-time measurement noise (Ref 10).

DLQGRS (Fig A.12)

The subroutine :LQSRS is called by RGS to perform all

necessary computations to specify a sampled-data controller

and then formats the controller for performance analysis as

discussed in the Sampled-Data LQG Controller section of this

thesis. DLQGRS calls XSU and then DDTCON to compute the

steady-state optimal feedback gain rratrix G*. It then com--c

putes a steady-state Kalman filter gain K, using the subrou-

tine DKFTR or the subroutine PKLIRC depending on whether the

user wishes to compute K from the matrix Riccati equation

(DKFTR) or to pick K directly (PKDIRC) (as in the section
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of this thesis titled Enhancing Robustness of Discrete-Time

Systems by Directly Choosing K.) Filter poles, LQ controller

poles and LQG rontroller poles are calculated (MEIGN) if the

user wants to see them.

XSU (Fig A.13)

W The subroutine XSU is called by DLQGRS to compute

the matrices X(ti), S(ti ) and U(ti ) as described in Eqs (2.95)

through (2.97).- Notd, XSU does not directly solve Eq (2.95)

through (2.97) but solves an approximation to their solution

forms as discussed in Appendix C, Programming Considerations.

DDTCON (Fig A.14)

The subroutine DDTCON is called by DLQGRS to compute

the steady state optimal feedback gain matrix, G*, for a
-c

sampled data controller. Some data formatting complexities

involved in using Kleinman's matrix Riccati equation solver

to compute the G* are discussed in detail in 'ppendix C.-c

One involves computing values for the integral definitions

of X, S and U as described in the Sampled-Data Controller

section of this thesis (See subroutine XSU). Another involves

converting a system with a non-zero cross cost-weighting

matrix, S, to an equivalent one with a zero cross cost-

weighting term since the Kleinman matrix Riccati solver does

not have provisions for non-zero S (this conversion is done

by subroutine PRIMIT).

107

* --- --- ~ --- ----



C xs U

Read number 
of,

sub intervals-

I a=ze, DDTCON

f.r=O, X=O, U=O,
,S=O Format system equations

f or Kleinman matrix
Riccati equationSCompute -f., B.j for solver__

each subintervil - PRIM:I T

t ho, P j I Compute Kc steady state

I value from matrix
Compute running sums Riccati equation
of )_(ti), U(ti),

s (t.)_____I____ _
Compute the optimal
steady state feedback
gain ma-tri.X,G-r

last N
subintervalN

Y Return

Print u(t,, (tji,

and S(t Fig i-.14 DDTCON

Fg A.17 ZU

108

IL



DK:FTR (Fig A.15)

The subroutine DKFTR, when called by DIQ-zS, corputes

the steady-state Kalman filter gain, K, for a sampled-data

LQG regulator as discussed in the Sampled-Data LQG Controller

section of this thesis. There is a provision to modify the

computed value of K by altering Q (the covariance on inpuz

nioise matrix) that appears in the matrix Riccati equation for

K. The modification is performed, when requested by the user,

by calling subrnutin§ DAS2.

DAS2 (Fig A.16)

The subroutine DAS2, when called by DKFTR, performs a

modification to -d (the covariance of the input noise) that

is a modification to the Doyle and Stein technique that is

applicable to sampled-data systems. See section The Ecle

and Stein Technique in Discrete-Time Systems - 2 -the body

of this thesis, for a description of this modificatior. DAS2

-is very similar to DASi and as in DASI, the user chooses op-

tions in order to enter a scalar design parameter, to enzer

a matrix design parameter, to calculate the modified _d and

to exit the routine.

PKIRC (Fig A.17)

The subroutine PKDIRC, when called by D1QlzS, z-rforms

t'.e necessary inrut options and computations to derive a Kal-

man filter gain K in the manner described in the 7nhancing

Robustness of Discrete-Time Systems h Directly Choosing K
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section of this tlhesis. The user must specify the scalar

design parameter, q, and one of two methods for choosing the

matrix design parameter, W. W can either be chosen directly

or can be calculated as in Eq (2.129).

FRMAUG (Fig A.18)

The subroutine FRMAUG receives data in either the con-

tinuous-time or sampled-data LQG controller format and forms

the augmented matrices required by the performance analysis

algorithms described in both the Continuous-Time Performance

Analysis and the Sampled-Data Performance Analysis sections

of this thesis. That is, it forms Fa or aP ,.a or Bdaa G cr

Gda' Qa or Qda" and P xaV for continuous-time systems.

In addition, it also forms R a$ gcza Gua Ra and G are-cza ' --a -cza

simply Rt and Gcz in the upper left partitions of Ra and G-t CZ- -CZa

respectively. All other elements in R and G are zero.-a -cza
It is necessary to form R and Gc in order to use the Klein-

-a -cza

an matrix routines which require that all ma'trix arguments

be of the same declared dimension. Gua is formed out of ex-

pediency. It is the lower partition of the matrix.

It

;':hich appears in Eqs (2.47), (2.49, and (2.50). With C

t]-xzs de"' , z : G P . I.. elAminates the ur.--, defl -UU. -ua -aXa -ua

necessary multiplications associated with the upper partition

of the matrix above.
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Note that P v as defined in Eq (2.57) is calculated
a t

only for continuous-time systems and then only when G in
-cz

Eq (2.27A) is not equal to zero.

STCRED (Fig A.19)

The subroutine STORED is called by PERFAL to format

d ata from the performance analysis subroutine, PERFAL, for

storage on local files. This allows the user to store data

as a permanent file upon program termination and, later,

to recall the permanent files for printing or plotting as

required.

PRIMIT (Fig A.20)

PRIMIT is an auxiliary routine used by DDTCON and

CDTCON for optimal deterministic controller gain calculations.

It -transforms a given system of equations with non-zero cross

cost-weighting matrices to an equivalent system of equations

with zero cross cost-weighting matrices. The requirement for

and details of this modification are discussed in Appendix C.

CDTCON and DDTCON transform the resulting optimal feedback

gain matrix back to a form consistent with the original system

equations.

DLATIO (Fig A.21), MVECIO (Fig A.22)

These subroutines are auxiliary routines that are

callc " mst other subrcutines to perform input and output

of matrices and vectors respectively. Both routines perform

Zactions on the desired array/vector based on the value of
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mhree parameters, iO, KIN, KOUT. KIN' and :KOUT tell the rou-

tir.es which file to read from or write to, respectively. I0

can have any o4 5 values; 1, 2, 3, 4, 5. If IO= 1, the rou-

tines read all elements in list directed (and row by row for

arrays) form'at. '0= 2 7erforms the same read but also writes

out the entire array/vector. I0= 3 lets the routine read

selected elements in the array/vector. I0= 4 performs the

same read function as I0= 3, but it then prints the values

read. IO= 5 causes the routine to print out the entire ar-

ray/vector. Note that if I0 is any number than those listed

above, a call to these subroutines produces no action other

tharn a return to the calling program.

AUGMAT (Fig A.23)

The zubroutine USTMAT is auxiia-y routine used to

form augmerted matrices. Based on the flag F.0.M, AUG.T

either forms

,hen given the two matrices A and B and their dimensions.

115



edRead desired iorm- 1 es
dead

0 eadror 2, read matric2
es 

i

aand 

B

n
07

t

tI-Form the augmented

matrix

r 

i

cu2-Form, the augmented
matrix

Return

Fig A.23 AUGMAT

116



A.pendix B

Software Source Code

This appendix contains the FORTRAN V software written

as a result of this thesis. The FORTRAN Y source code imple-

-ents the flowchar-zs -hai are specified and discussed In -

Pendix A.

Table B.1 contains a listing of the variables as used

4n the various sections of this thesis along with their FOR-

TRAN V counterparts ds used in the software.
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TABLE B. 1

Correspondence Between Variables in Thesis and
FORTRAN Source Code

Variables FORTRAN Variables FORTRAN
as in Thesis Counterparts as in Thesis CounterpartsI
F FT exp(-F At) EAT

Bt  BT Jo GQGTfTdr INTGA

G. GT j

4HT LIBd INTBA

-it QT Pxav PXVA
t at

Lf -RT G cx GCX

G GCY
G cy GCZB. G-c z G

B BCY

--c z BCZ
F0  FC

~R14 Ri"f t PHIT

I-xx PHIM
wuuu FC

--c
-Xu t DE TI1h'

GCSTR

RKFSS_,S S

FAU:-a= U U

_j PH!J
Gk=a B •BJ

" QA -I

-ua

PXA V V
ax q S Q

MIXT

P XT
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TABLE B.1 (con't)

Notes:

a. A "D" appended to the right side of the Fortran vari-

able indicates .that it is an equivalent discrete-time repre-

sentation of the variable. For example, BTD is the equi-

valent discrete-t%4e counterzart of

b. A "T" appended to the right side of the Fortran vari-

able or expression that designates a matrix/vector, indicates

that the matrix/vector is transposed. For example, HTT is

t'

c. An "I" appended to the end of a Fortran variable or

expression that designates a matrix/vector indicates -. at

the matrix/vector is inverted. For example, PEII is R_

--m
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tbECK LOGRP
PROGRAM LQGP(OJTpUT;S46TAPE6.OUTP U TrAPELBSS4 TAPEI3*64.
ITAPE14s44 APE1664, NPU T4,TAPEIS6iP(0UT.TAP~fi-64 TAPE7)

C THIS PROGRAM PERFORM$ A PERFORMANCE ANALYSIS FOR THE LINEAR QUADRATIC
C GASSIAM CONTROLLERS DESCIIED IV DCX).'DT*FX+DU+CU AN1D A QUADRATIC
C COST FUNCTION IF DIFFERENT CONTROL. ALCOR17HN16 ARE SUPPLED THE
C PROGRAM WJILL SfILL DO A PERFPRPIANCE ANALYSIS. THE METOI4OVOLOGY 1S
C BASED ON THE PERF ANAL. SECTION IN CHAPTER 14 OF P. S. %AVIECXS
C TO BE PUBLISHED UOLIJME 8 OF STOCHMODELS..EST AND CONiTROL.
C
C MANY OF THE SUIROLJTZNES USED FOR MATRIX MANIPULATION COME FROM THiE

C ROUTINES COMPILED RY D. KLIENMAN(TR-75-4. ONR CONTRACT I
C h~eee±4-75-Cl067)
C
C IN THE FOLLOWING PROGRAM TRUTH MODEL MATRICES ARE TWO LETTERS WITH
C THE LAST LETTER SE1ING -T- .CONTROLLER MODEL MATRICES ARE TUO
C LETTERS ZNDING IN -M-.* -T- FOLLOWING APARTICULAR MATRIX NAME
C INDICATES THE MATRIX IS TRANSPOSED. -I- FOLLOWING A PARTICULAR
C MATRIX NAME INDICATES THE INVERSE OF THE MATRIX
C
C
C COMM BLOCKS MAZNIDMAIN,IHOU ARE REQUIRED BY THE KLIEMAK ROUTINES
C---INPUT FROM TAPEI* --- OUTPUT TO TAtPEll

CHARACTER ;SQZS
REAL FT(S.S).IT(5.S).GT(S,S),HT(S.S),RM(S.S).

iPO(S.53.QT(S.S ).RT(S,S),CMtIO,1).CO2(1O.):GCSTR(S,S
I )W SS ),RM2F(5S;.M5)Uu1 (ry~SSTT (SS.mt~

GcI ,CKS)5bGCZ(sS l.OA(1,.I,).PXA(1* 16) PXvA(I.110).
I MUOIJT(s ).MX'TO+(S),PXTUtS) PUOUTS.DlIk
I GUJA(IO.1S),MXAMIMS),XAkMAX(t).MUM4(I mmmU ilt.
1 PXTIN(g) PXTh4AX().PU"MNS),PUMAX(S).CA(l.IB).
I Rokis to) iC(iI).ICZ(SS1.6CV(5 $),FCfS,S),

INTEGER IFLGCZ. IRY
REAL I'W~c)
COMMON 'OR"tIM' RNTIME.DELTIM
COMMO'N /MAIN2IoCOMB
COMMON /MAINI/NDIM.NDJMi,COMI
COMMON / INOU.' KIN,bzOUT.CPUNCH
COMMON .MArN4/NrZMD1M3
COMMON /MAUNE' MSG
COMMON 'MAIN60 ICITDZCBM.ICFA.ICGAICCMICCTZCOAIRFA,IRFM,4RFT,

I IRHTIROA,1O,LG.IRM,IMDTS
C

DATA UNA.UMt,UMC,UMD,U? E,UMF P668ZO.8-
DATA OA,COPMI,COM2,FA,DR,GA,PXAPXVA n960.0/
DATA UU3.U1J4 /Z920.61
DATA UMI.UM,uR3,UM44.U#MS.U(M.FT,BT.CT,HT /RSSZ.8/
DATA 64UU.UXX,FMBM,6MPO.OT.IJXU /220~.0/
DATA RTGCSTR,RICFSS,CCX,GCZ h/L25.6/
DATA UVI.UUJZ,XO,MXA,MU /3020.01
DATA RM.GM.HM /7S%6.*i
DATA XFLOCZ /V'

C
C

K0UTs6
KPUt4CH-7
KOIM-S

HDIM2.IO
NDII'3- Im

C
C
C
t 2*9212922MAth PROGRA FOLLOWJS 2222222
0--- IRXX. ICXX INDICATE *OUS.COLUMNS OF "ATRIX XX
C
C*2x*2TH1S PROGRAM CAN HANDLE UP TO 1"S DIFFERENT COMNINATIOS OF

DC 391UNTIME,DELTIM.AND UNSPECIFIED PARAMETERS
&IRITCKOU.II) 

'
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la rRAT(A1, ,,j Sp UBR'LG MRro
F R AT ( O TLT, , r , M M w~ o ,*

CAL INpUTA F1,T, ,

IF dlO.EQOe) THEh
GO TO Z33
END If sox GCZ,SCY,3czFC YD*

CALL RG~ C T jjme u p u l , I

UjRITE(Kou,)Do You 
VZSH TO CALCULATE TtC. EIGENVALUES OF TH CL.OS

IED-L.OOP STATE TRA4SITIO" 
TWARIfl USED INI THE 

PERFoR1MANCE ANALYSIS

I(APPL.ICABLE TO SOT% T"E 
COTNOSTM AMD SAIPLED-WAA CASEI

READtK1h,1ZMS
IF (ISO.EQ.*') 114EN

WATIE(OUT.2)THE. CILOSED-LOOP STATE TRANSIION MATRIX EIGENVALUES

NSAVNrDIA

CALL MEGcM W3W4IRFA.UI%E
HD I'qNSAV
N'D1~1 .NSAV~ I
END IF
URITEOUT.t)T;EY o
URITE OUT , VP ) PERFORM' THE COVARIANiCE ANALVSIS.. 

TYPE

I h TO SKIP IT>'
RADK(. x)"sC
IF (N TE
00 TO a932
END IF

CALL F RFAL( ?RFCZYK(,C 
U )A, PXA. IFLCSD.

I WU, V

2932 CONTI"U

B933 wRT(O1,VRGA 
TRMIN'ATED, 940 ORE-ImPUT 

DATA'

SUEK R0UT1INE STORED( 1UH,RN IMEDEL IM IFSTCL. 15 1ZSZD

5TEC TonE 
5 bEL.STII'. R14.STORIS ,NDIRS)

CTI41S Su OU ISTORSISZl PL T o To LOCAL FILES. TAP12 TAPEI3.

* CTHSSjoTX STRE PLTP DOR 
WER -m4T STORAGE. isxxsZ IS THE SIZE IF THE

CDATA RRAYS,STOR X. D IM IS T 1E CA 'LI . PROGRIn+ Dll E HE O

tTHE ARRAYS. NOTE THAT RUNTIPS IETR2 11UE E TOT

CH 
RU. TE LAST VNR'INEC

C NIER Of DATA POINTS I" H h AO H IENH

C DATA FILE Is THE SCALE FACTOR DFOR THE DATA N THE F t

C 
EXT TO LAST ENTRY Is THE Il1U"VUEOTHDAANTEFL

D i E tSlc O S T OR T ( D I R &g ) ST OR 3 L N4D I 1%6 1 ST OR 4 C ) R S N 1 45

If tIFSCL.E.0 THE"

C PUT A RUN HEADER ON T E I TAPE3O

OpENCUMIT .x.ERReIS.*IP;E1':RECLSSb)
vlar(UMTIS4ERR~:#FILE*1TAPEIS,RECLS0)

URITSMt1,l
1 jICRNRN"TIME,DELTI,,I~az

WRITE(16.iti
let rm"ATC'

END VF
if (IVSTCL.LTAI1 THEM

c CLOSE PILES AND PUT1 END or FILE "ORKER 
OM TMiCH.

CLOSE(StEARft' I

CLOSE0I4,ERR-16
CLOSE(MuERR IS)
RETURN
EMD IF
uRTTE(Ia 169)(T0RI'V( 

j.I1S
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RETURN
to WRITE (OUT.X)'AN ERROR HAS OCCURRED IN TrHE STORED ROUTINE'
102 FORMAT(3(4(' 'ES6f,)

END

SUBROUTINE INPUT tFT,IT.GTHT,FMIN,G.HrK.POQOTD~RT.RM,Xo
I * IUU. UXXILJ)

CHARACTER IMSQX6O,KSG*Se
REAL FT(MDIM.NDIM),3T(NDIM.NDrN3.GTCND.NDN),TNDM,1Dr1),HI(ND

I CR(NDIM,ND1N).UXU(hDIN,HD1M).
I PO~tNDIP,NDIM),OT(NDIM,HDIn,RT(D1N,DIM),COM1(),CPK2(1)

COMMON 1MA1N8Z/COM2

COMMON / !NOU' KI1HOUTKPUNCH
COMMON /MfAUf~NS S
COMMON fMAIM6/ ICIT. 1CBM. CFAICGAICGM.ICGT.ICOA,IRFA. IRFM,IRVTf,
I IRHT,IRQA,I0,LGG.IRHIi,H~MDTS

C ICFTIRFr.ICFM.IRFM.IRT.IRT.IRDMIRI.IRCT.INrr.IRGN.IRFN
C rRX-IRIROJC.ICG,IPR-ICRIT.IRIJXX-ICX)(.IRFM,
C -IRWIUUU- ".ICMCIIRFT ItlIf.RC.CTIGZI~T
C 10 IS A INPUT ROUTINE PARAMETlER--iIREAiDDf-READLPRINT.
c 3%. PRINT ONLY. 4-PIJICH

IqSA'J*NDI~q

C IRX.IRF. IRGXCO CGM. IRROrCM.IRNT, IRWXX.ZCWXX.1RFMq
C IRUU.!ICUUU-ZCkM ICHT.IRFT ICHIR'l.IRCZ.ICBT,IC CZ.?R,
C 10 IS A INPUT ROUTINE PARAM'ETA--I-READ, -REA LPRINT,
C 3- PRINT ONLY. 4aPU4CH
C

NSAV.NDIIQ
MDIMI -hDIM
IF (LQG.EQ.I) THEN
hRIECKOuT~t )MSOI
URITE(KOU ,:)'THE 1/0 OPTIONS ARE I,1,2 3.4 S.6 .......
URITE(KOUT.: ) * -READ ENTIRE ARRAYzUEC+OR.2-AEAD AND PRINT'
URITELKOUT.:)'EMTIRE ARRAYVECTOR, 3-READ,AND 4-READ AND PRINT'
u1RIT JKOUT,%)'SELECTED ARRAY/VECTOR ELEMENTS, 5 PRINT ENTIRE'
JRITE CKOUT,Z)'ARRAYVECTOR. 6 OR GREATER NO MORE INPUT TO'
WRITECKOUT,:)'DE MADE.'
URITE(KOUTD: )?SGI
URITE(KOUT,Z:PSELECT WIHCH MATRIX YOU WISH4 TO ENTER.'
URITE(KOUT,*)'lY ENTERING THE ADPROPRIATE NUMBER. 1-VT.Z-BT'
URITrE(KOUT.Z)'3-GT.4-$T.S-FM.6-BM,7-CM.8-MR.9-PO.1S-0T,11-RT,)-
WRITECKOuT.:,'12-OM,13-R.14-XO.1S-W-u;UXXI?-uXU,1u-EGuATE ALL

URITECKOUT,t)'COMTROLLER MODEL PqATICES TO THEIR
WRITE(KOUTZ)'TRUTH MODEL COUNTERPARTS.2 1--NO AORE DATA'
URITE(KOUT.:)'ENTRIES TO BE MADE. as--STORE ALL MATRICES ON TAPE?'
URITE(KOUIT.S:21- READ ALL MIATRICES FROM TAPES,
URITE(KOUT.1 )M'SGI
WRITE*KOUT.1 )MSGI
URITECKOUTZ)'
hIRITE(KOUfT.2)-FOR SAMPLED DATA MEASUREMENTSENTER EITHER A COt4TINU

IQUS RM TO USE TO APPROXIMATE THE DISCRETE TIME RMD(RMD.RMSAMPLE
ITIME. OR ENTER THE DISCRETE TIME RMDI
IIRITE(KOUT.* )MS61
URITECKOUT,: )"SGI
VID IF
DO 95a 119uya',193
UNITE CKOUT33333),

23333 FORM'AT(A0,,')
URITEIKOUT,I'E"iTFR CODE FOR WHICH ARPAY4IVECTOP TO SE INQUT'#
READ(KIHDB )IUC4MA

C
CgzZTRUJTN MODEL INPUT

I RITEKOUT,X3'ENTER-In OPTION. FT MATRIX SIZE>
READ CKIh.Z,ENDw27 JIO.ZftF?
MSO.'TRUTH MODEL F MATRIX ENTRIES'
CALL PW9ATIO (FT IRVT 'IRFT.IO.CIN,KOU?.NDIM,NDIMI)
IF (104.6.S TWtl
RETURN
END IF
Go TO 933
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2 RITE(KOUT.2)'ENTER-1/O OPTIONS. COL.UMN SIZE, OF IT')'
READ(K1#1,x.END.2?3Z0,IClT-
IiSG.'TRUT14 MODEL I MATRIX ENTRIES'
CALL flIATIO C3T.IRFT.KCT,1O.I.RzOT,NDIINDrII )

IF (IO.EG.S) THEN
RETURN
Go TO 92

3 URlTE(KOT,2)'EITlEU-I,0 OPTION. COLUMNt SIZE OF GT>'
READ(KlN.2,EMD.27)IO. 1CG?
MSG-'TRUTH MlODEL 4 MlATRIX ENTRIES'
CALL MMATIO (CT,xRrr,ICGT.1o,Kl,KOJT.NDIN,NDIII)
IF (O.EQ.6) THEN
RETURN
END IF
GO TO 98a

4 URITE(KOUT.1)'ENTER- 1.*0 OPTION, ROW SIZE OF W01'
READ(KIH,2.EMDo2? 310 IRHT
9MSG~'H MIATRIX ENTRIES'
CALL PATIO (HT.ZRHTIRFT,1O.I.KOUT.DI.4DZft1
IF (IO.EG.S) IWEII
RETURN
END IF
so TO 9"2

C3MZ1NPUI CONTROLLER MODEL
s URlTOU.T,)'EM!ER-1IO OPTION, FMi MATRIX SIZE>'

REAb(CIM.%.EMP7IO 1. 1RFM
MSO'.'CONTRCLI.ER M ODEL F FATRIX ENTRIES'
WRITE(KOUToW)ENTER THE NUMIER OP DETERMINISTIC STATES IN THIS MOD

11L0'
READ(KIM l.END-273NUMD'
CALL MMAf 10 (FM.IRFMIRFM.ZOSIILCUT.NOIN.NDZNI)
IF (I0.Ea.@) THEM
RETURN
END IF
so TO sat

6 UAITE(KOUT 9)'ENTER-I/O OPTION, COLUM~N SIZE OF BM)'
REAM(MUZ~ND-M7 IO.IC31M
MSG.'COMTORLLER MODEL I MATRIX ENTRIES'
CALL MATIO (3I .IRFIC 1M. IO.KN,KOU.N0,.fDIHZI)
IF (IO.EQ.O) THEN
RETURN4
END IF
GO To 932

7 VRITEIKOU .t)'ENTER-1/0 OPTION, COLUMN SIZE OF QM)'
READ(KIM,x,END.o27)IO, ICCM
RSG*'CONTROLLER MODEL G 14ATRIX ENTRIES'
CALL MPIATIO (G", IRFM. ICGPI. IINKOUT,NDII!.NOZMt)
IF (IO.EQ-S) THEN
RETURN
END IF
Go TO 982

a hRITE(KOUT,2)lENTER 1/O OPTION.ROW SIZE OF MW)
READ (KIM, t,EKD.7) 10, IRN
MSG-'THE CONTROLLER MODEL MEASUREMENT MATRIX, IW, IS'
CALL MMATIO(HM.lRHP , RF-K1, I,KOUT.MDIM,NDIRI)
IF ( IO.EQ.6* THEN
RETURN
EMVIF
Go To got

3 UAITEUOUT.1)'T MUST NE ENTERED TWEU OPTION I PRIOR TO USING THIS
I OPTIOM.0O YOU VISH TO ABORT THIS OPTION, V OR N)'
RE^V(KIh 97.EKDe27)ftGI
IF (MS41.Q.V) THEN
Go TO 932
END IF
URITE(KOUTDP*ENTER 110O OPTION,IRFT IS ASSUMED SIZE 0F P0>'
READ(II,%,EKD'E7 310
MSG411'HC INITIAL COVARIANCE MATRIX PC, Z61
CALL "MATIO (PO IRT,RFT,ZO,KIN,6 ,DIM.MliM)
IF (IO.0O.4) THS~
RETURN
END IF
GO TO 932

WShRITE(MOUT.~)'ENTER 1/O OPTION, ICQT IS ASSURED SIZE OF 07)'
RCAD(KIN.S,EMD-27 10
MSC.'TNE INPUT NOISE STENOTH MATRIX 0T IS-
CALL RMATIO (OT,ICGTICGT,.IMKOUT,NDIIDNDIN1)
IF (IO.0Q.61 THEN
RETURN
END IF
GO TO 332
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it 6URITECKOUT.2)'ENTER 1/0 OPTION.IRHT IS ASSUMED SIZE OF RT>'
READ(KIH.t.END-R7 )lO
r-SG-'THE MEASUREMENT NOISE STRENGTH MATRIX RT IS'
CALL MMATIO (RT,IRT.IRHT,IOKlN.*OUT.NDIr,.NDIMI)
IF (IO.EO.S1 THEN
RETURN
END IF,
GO TO 932

12 URITE(KOUT,Z)'EHTER I/O opIoNCam IS ASSUMED SIZE OF OR),
READ(KINjz,END-27)I0
MSG- 'CONTROLLER MODEL INPUT NOISE STRENGTH MATRIX, OM'
CALL AMTIOO9.,ICGN,ICGM.IO,I,OLT,NDI9.NDimi1)
IF (I0.EQ.G) THEN
RETURN
END IF
Go TO 932

13 URITE(KOtJT.2)'ENTER 1/O OPTION, IR4M IS ASSUMED SIZE OF R19>-
READ(KZIN. z.END.27 )1O
MSG. 'CONTROLLER MODEL MEASUREMENT NOISE STRENG.rT MATRIX, RM'
CALL MMATIO(RN. IRi'P, IRNM.O1.c.OUr.NDIN,,WIML)
IF (IO.EO.S) THEN
RETURN
END IF
00 TO 92

14 URITE(KOUT X)'FT MUST BE ENTERED THOU OPTION I PRIOR To USING TI-ISI OPTION. bo YOU WISH TO ABORT THIS OPTION, Y OR N)'
READ(KIN.97,END.87 )MSG
IF (MSG.EO.IY') THEN
GO TO 982
END IF
WRrTE(KOUT,%)'EKTER 1/O OPTIOM,IRFT IS ASSUMED SIZEOF XO>'

READ(KIN,*,END.27 )IO
F.SG-'THE INITIAL STATE VECTOR, XO, IS,
CALL MVECIO (XO. IRFT. IO,KIN,KOUT.NDIM)
IF (IO.EQ.@) THEN
RETURN
END IF
GO TO 92

Is URITECKOUT,S)ulq MUST BE ENTERED THRU OPTION 6 OR 17 PRIOR TO USIN1G THIS OPTION. DO YOU WISH TO ABORT THIS OPTION. Y OR N),
READ(KIN.g7,END.27)MSG
IF..JMSG.EO.'Y') THEN
GO.TO 982
EIRD IF
WRITE(KOUT,Z)'ENTER 1/0 OPTIONICBM IS ASSUMED SIZE OF UU)'READ(KIN.*,END%27)IO

MSG-'THE CONTROL FUNCTIO" COST WEIGHTING MATRIX. WU'U
CALL MMATIO(UUU,ICBM.ICBM,IO.KIN.KOUT.NDIMNDIMI)
IF (IO.EQ.0 ) THEN
RETURN
END IF
GO T0982

is URITE(KOUT,Z)'FM MUST RE ENTERED THRU OPTION 5 OR 17 PRIOR TO UtSIN
IG THI1S OPTION. DO YOU WISH TO ABORT THIS OPTION, Y OR N),
READ(K1lN.97.EID-27)MSG
IF (MSG.Ea.'Y') THEN
Go TO 98
END IF
URITE(KOUT.z)'ETrER IeO OPTION,tRrM IS ASSUMED SIZE OF hIX)'lREAD(KZN.2,END.27 )IO
MSG'THE STATE COSTEIGTINOMATRI xxo

RETURN
END IF
00 To 333

13 URITECKOU? t)'ALL CONTROLLER MODEL MATRICES HAVE BEEN SET EQUAL TO
1 THEIR TRU+H MODEL COUNTERP ART S'
WRITECKOUT,*)'FT,BT GT HT OT.RT MUST BE ENTERED PRIOR TO USING TMIl

IS OPTION. THE NUMBER bF bETERMINISTIC STATES MUST BE ENTERED IN
I THIS OPTION(FOR CONTROLLER MODEL).'
URITE(KOUT,2~' DO YOU WISH TO ABORT THIS OPTION,Y OR N)'
READ( KIN,97,END*27 )MSG
IF (MSG.EQ.'Y') THEN
GO TO 933
END IF
WRITE(KOUT.X)'ENTER THE NURBER OF DETERMINISTIC STATES IN THE CONT
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IROLLER MODEL)'
READCKIN,Z.EHD.27 )W4~DTS
IRFII.IRFT

97 FORMAT(At)
ICRM-~ICBT

CALL EGU1ATE(FM,FT,IRFT, IRFT)
CALL EGUATE(BM.RTIRFT,ICVT)
CALL EQUATE(GIM.GT,IRFTICGT)
CALL EQUATE(14q,HT,IRHT.IRFT)
CALL EOUATEON.OGT.ICGT.ICGT)
CALL EOUATE(IZMRT, IRt(T. XRi7)

17 LDRITE(KOUT.2)'NOTE THAT FM AND IM9 MUST BE ENTERED THROUGH4 APRPRI
lATE OPTIONS PRIOR TO EXECUTING THIS OPTION. DO YOU WISH4 TO ABORT T
IMIS OPTION, Y OR H)'
REiD(Klh.97.ENDaE7)MSG
IF (MSG.EQ.'Y')TIEN
GO to 988
END IF
WRITE KOU?,*:'ENTER 1,10 OPTION, IRFM X ICBM ASSSUMiED SIZE UXU)'
READ(KIN.t.END.27)1O
MSG-'T4CF CRO9S (STATE-CONTROL) COST PSEIGHTING MATRIX. UXU'
CALL MMATIO(UXU.IRVM.ICBM.1O.KIN.KOUT.iWIM.NDIMI)
IF CIO.EC.S)THEM
RETURN
END IF
GO TO 988

ft URITECKOJT 1)' THIS OPTION STORE$ ALL MATRICES ON TO TAPE?, DO YOU
1 WISH TO AiORT THIS OPTIO,Y OR N)'
READ(KIN.97 )MSG

IF (MSG.EQ.'V'1TKMN
Go To 928
END IF

URIrE(7,ZRF7. lCD?,ICCT,IRH4TIRFM,ICDPi,ICGM,IRHM,NUMDTS

l(I(7C,*),J.TI,R),Jw1,IRFT), ((3C1.),J.1,I3),I.1,IPTq) -,R1URITEC7,*:CG1,J,J),l,ICGM I.IRFM)(4MC1.J),J-l,IRFM),I.1,IR
1-J.1.ICBM),I*1,ICIN),C(UXX(I,J),J.1,IRFM),I.1,IRFM)
4URITE(7,Z)( (OTC 1,J),J.1, ICGT). I-1,ICGT), CRT,J)J-,IRT2,141,IR

URITEC7,1)CCUXU(i,J),j.1.icIm),i.1,rRFm)
GO TO 982

21 WRITE(KOUT.1)' THIS OPTION READS ALL MATRICES FROM TAPES, DO YOU
I WISH TO ABORT THIS OPTION, V OR N)'
REA.DCKIN,97)MSG
IF (MSG.EO.'Y') THEN

GO TO 982
END IF
WRITE(KOUT.1)'DO YOU WISH TO REUIND TAtbES BEFORE THE READY OR M>'
READ C11N,9? )19
IF (MSG.EO.'Y') THEN

REWIND($)
END IF
READ (S. t.END. 1003) IRFT. ICIT. I CT. IRKTIRFM. ICBM. ICGM, IRM. ". DTS
READC8,Z,END-1*3)(FTI.J) J1.IRFT).IIRFT),C(BT(1.J).J.L,1CI

RTEAD(B.?.END*19633) (OTI.J)I. I T) (.ICT,((RT.J2.JRFT.IIR
T),s.IRT(F(OM(I),JI,IGM),I.Ic )c(M(J).J1.I,1p,.q?9.IR

I I.I,!RII4Pi).RFM

READ(S 2)1(UXUtIJ).J'I.ICIM),I.I,IRFM)
G0 TO 682

10e33 WRITE (KOUT, t'END OF, PILE ENCOUNTERED DURING READ OF TAPER'
982 CONTINUE
19 CONTINUE

NDIMI*NSAV
RETURN

27 10.8

( 'END
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tD-c mm U

SUBROUTINE MEICNCA.AREV.AIEUC:URSZA,Wnl1
CHARACTER P.S G%6
DIIKESSIOtA(DI.D).AREVtNDIMN.AIEV(NDIN ),LIL(NDIM,NDIM)
DIMENSION COM(l),COM2(I.)

COMMNON / INOUI KIM,KOUT.PU1CH
COMMON4 /RAINZ/ COME

C THE CALL1N^ ROUTINE MiUST SUPPLY A WORKING IiATRX NDIM X HDIM --61M1
CUZVFIND THE EIGENVALUES OF A A-9~ TELLS THE ROUTINE TO CALCULATE
C EIGENU-ALUES ONLY
C "DIM MUST BE THE DINEr'SION OF A IN THE CALLINa PPOGPA-!
C CURSZA IS THE CURRENT SIZE OF A

CALL IDrTCCURSZAI,l)
C Umi' .1 CUIPSZA X CURSZA

* CALL EIGEN(CUPSZAAEL.AE.WEUi.4T)

NSAJ-DII
mDZNI.NDIN
MSGO'REAL PARTS OF THE EICENVALUIES
CALL MVECrO (ARE CRZ.1.I.O~TtDM
MSG. ZYIAC PAR'T'S OF THE EICENUALUES

C CALL RVECIO (AEUSAII.O1~~m

tDECK CDCOtI
SU BRO UIJT NE CDTCO M1(FM N i x ,u u m .i t c m w l , ma*U3WM.m uI IJDIMf4*U ,UXUPR) p pV

1,GC STR(MDIMDNDIM,)

DIMENSION comm i),coPm2(lI
COMMON PImAIN2,'COe
COMMON /MlAINI 'NDIpM. DZN:, COmI
COMMNON / ThOU/ rZIN,KOu?*KPUNcH
COKMNON 'NAUNSI MSG

C

CIZIDE-ERMI1NZSTIC CONITROLLER GAIN CALCULATIO --- MODUJLE * 1
C
C. THIS MODULE COMPUTES THE STEADY STATE DETERM9INISTIC CONTROLLER
C GAIN MATRIX. GCSTARw (WUI) 3,T) cKCSSPM). UUI IS THE INVJERSE OF T
c CONTROL COST IEG44TING MIATRIX, KCSSPM IS THE STEADY STATE
C SOLUTION TO D(C/l(M)K)(C(M+U;(C(M(UI(f.)
C (KC), WXX IS THE COST WEIGHTING PATRZX ON THE STATES
C
C KLIPHt ROUTINES ARE EXTENSIVELY~ USED IN THIS MODULE
C TRASFORI SYSTEM SO TH4AT UXU h9T%6 CAN STILL. BE HANDLED Byi
C KLEINMPAN ROUTINES, SEE KWAKERNAAK AMD SIOAN'S BOOK. PAGE 322

CALL PRIMIT(UMI,.UUU.ICIM,CCSTR.UXU.IRFM.3UN.FPRII,X.UXXPRM.

C HIOW HAVE FPRIA, U)OCPRM CAN USE RICCATI SOLVER FOR KCSSPM

CALL TRANS2( IRVPI.IC3M.BM.W1M)
C UPI83T ICBMI X IRV"

CALL EQUATE(W NI.UU. lCRNICSPI)
C CMrmV DESTROYS THE CALLING ARRAY

CALLCNV(CMB.PlU3I.'T
C UPK3'%AJUI ICBMI X ICBM -- 4 IS A" ERROR INDICATOR

IF (NR.NE.ICIM) THEM
PRI~t,,Am ERROR OCCURRED IN INVJERTING WUL. PRI.,MR,IIC5PI',ICVM
END IF
CALL EQUATE(UMI VN3 ICRI.ICRMI

C WUNI.UU SAVE FOR CATEA COMIPUTATIONS
CALL liATICUN3 hIN!,IC3PI ICIPI,IRFNMUPI4)

C UMd.(WUUJI)(DWT) HCIM X IRFPI
C t4OW CALL RICCATI EQUATION SOLVER

CALL PIATI(II9,UI4 IRFMI.let" IRFPIumv3
C uPI3.RPI(WuU)(RIT) IfiR K IRffi

CALL RC IRFP!,FPRIR.UNl3,bIXXPRM,UNE.UI6)
C UPIE'KCSSP! IRFM X IRFM
C U'.-3'(UI(P)(CPP)-IDONT USE THIS RESULT

RSQ-eKCSSPH FOR THE DETERNIIISTIC CO"TMOLLER IS'
toes
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NSAU-NDIR1
NDIMI-NDIM
CALL MATIO(UMaZRFM.IRF, IOKIN,KOUT,DINDINII

C HOW CALCULATE OPTIMAL GAIN MATRIX GCSTAR, NOTE I NEED THE
C NEGATIVE OF GCSTAR FOR THE !ONTROL LAW GENERATION FROM AN LOG
C CONTROLLER. AND THIS UILL 1E THE tCX REQUIRED IN THE PERFORMANCE

,€ ANALYSIS ROUTINE
NOIM1*H~SAv

C NOW KAU KCSSPM , CALCULATE GCSTR-UUUI(SMTCKCSSPM)VXUT)
C RECALL UMUI IN WMI

CALL MAT4A(BM.WUNIC|M4 RFN. IRFM.UM4)
CALL TRANS2(IRFM, ICDR,UXUUR3)
CALL MADDI(ICBIZ.RFM, 't4.UM3.UMa,CI)
CALL MPTI( I,.UWM2,ICBMIC3M,IRFM,GCSTR)
HSAV*1NDIMI
KDIMIi-sDIM

C CSTR iCNR X IRFt
: C C RSG-'WE OPTIMAL STEADY STATE FEEDVACK GAIN MATRIX, GCSTR'

CALL MRTIO(CSTR.IC1NIRFM.10.KIN.KOUT.NDIAM.DIIf1)
HOIMI -HSAU

C
END

IDECK CKFTR -
SURROUTINE CKFTR(FM.GM R HM NUNDTSRKFSS Q UN.UM2,

. S~UM3,1UM4,US,UM'Gt,IRFFD, IRM.&GF,H.3.1f,fl

C CALLING PROGRAM MUST SUPPLY EIGHT WORK SPACE ARRAYS
C
CTHIS ROUTINE CALCULATES THE KALMAN FILTER GAINS UHEN
C GIVEN THE FM,Hr, QM AND R MATRICES AND THE NUMPER OF
C DETERMINISTIC STATES. THE CONTROLLER MODEL MUST NE
C SPECIFIED SUCH THAT ALL THE DETERMINISTIC STATES APPEAR
C FIRST AND TOGETHER, TH4AT ISCD/DT(Xi,X2,....XK,XL,XR ....XN)T I fol]| ,

C WH4ERE XL THROUGH XK ARE THE DETERI! ISTIC L LS NDTH
C REMAINING STATES ARE STOCHASTIC. F1 IS K X K. AND F2 IS N-K x
C "-K, AND B1,B2,AMD G2 ARE PARTITIONED ACCORDINGLY.
C THIS ROUTINE FIRST STRIPS OFF THE DETERMINSTIC STATES THEN COMPUTES
CAND RETURNS KALMAN FILTER GAINSFOR THE REMAINING STATES.
C THE KALMAN FILTER GAINS FOR THE DETERMINSTIC STAES ARE SET TO ZERO
C AND THE KALMAN FILTER GAIN THAT IS RETURNED IS 0
C
C UHERE THE DIMENSION OF THE ZERO VECTOR IS K AND THE RKFSS IS THE
C STEADY STATE KALMAN FILTER GAIN MATRIX FOR THE N-K STOCHASTIC STATES.
C THIS AUGMENTED MATRIX IS RETUTNED IN RKTSS
C ALSO NOTE THAT IN ORDER TTO GENERATE THE KALMAN FILTER, ONLY
C MEASUREMENTS OF STACHASTIC STATES ARE EEDED SO THE H MATRIX IS
C REDUCED ACCORDDINGLY.

CHARACTER MSGS .RSG1t1
DIMENSION F2(NDIPNDIM)oH2(IDIMDIfi),F iCDIMNbIM).SM(NDIMNDIM,
I R(I I' NIM).HM(NDIMNDIM),VMltNDIM.DIM),O(DIM,NDIn).
I UM NDM.NDIM).M3(NDIM,DIM),UM4(MDZMNDIM),U SCRDIM,NDIR)
I ,uMS(NDIM.HDIM)
REAL RKFSSCDIRNDIM),vR(NDrmNDIm)
DIMENSION COMI(t) COM2(1)

': OtOMqo 'MAItNI-fD!M.NDIMICORI

COMMON I INOU/ KNoKOUT,KPUNCH
COMMON Ar"AUNSo "$G

C
C:g*KALMNA FILTER STEADY STATE OAh----MODULE I t
C
C RIFSSaCPMSS)(HMT)(RI), UHERE PM IS THE STEADY STATE SOLUTION TO TH
C RICCATI EAJATION D(PM)/DT.FCPM)PM(FMT).GH(Q)(GMT)-
C PM(HMT)(RI)(HM)(PM)C
C
C ttzgtZUDELETE DETERMINISTIC STATES, AND ---TRANSPOSE THE FE
C MATRIX FOR TKE RICATTI SOLVER SINCE IT TRANSPOSES THE CALLING ARRAY)

WRITE(KOUT,I)'IF YOU PLAN TO USE THE DOYLE AND STEIN TECHNIQUE PC
IR THIS RUN YOU MAY WISH TO MO.DIFY THE VALUE OF NUMDTS, THE MUnJER
I OF DETERMINISTIC STATES. DO YOU WANT TO CHANGE J1.DTS? Y OR N
tI).
READ(KIH,11)MSGt

NUMSAV-NURDTS
IF (MSGl.EO.'Y') THEN
URITE(KOUT, I EH TER THE 4EU VALUE OF NUMDTS FOR THIS RUN>'
READ(KIN,)NU)DTS
END IF
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:ADS.NufMDTS41
Do 2112 I-IDS.IRFM

_I II I-HNUMDTS
V DO 2112 J.IDSIRFM

JJ.J-NUfIDTS

1RFB IRFMi-MU!WTS
DO £113 I.1,IRHi
DO 2113 J.IDS.IRFM
JJ-J-NU!MDTS

C NOW FORM R2,GE

DO 2114 J.1,ICGS

DO 2115 I*IDS,IRFM

DO 2115 Je1,ICI'
P115 UN4C!I.j'~sDmC1 3)
C UIM4 &92 IRF2 X CB

IRHH. IRHI!
CALL MAT3(IRF2.ICGi.U~1,O,UM2)

C U,2vGMC~(0lG) lAP-I X 1R72 -- USED AS O'1IN KLIEHMAN RICCATI ROUTINE
URITE(bzOUT.*)'DO YOU WJISH TO M ODIFY 0 BY THE DOYLE AND STEIN TECNII
IOUE, Y OR W)
READ CKIN.I1)1iSG1

11FOR.9AT(AI)
IF (MSlC.EQ.'Y') THEN
CALL DASl(L!M2,UM4,UM1,IClM,WM3,IRFM)

END IF
MT& I
CALL EGUATE(WMPI,RIRH2,IRH2,

C GMINU DESTROYS THE CALLING ARRAY
CALL GF.IN(IRH2,IRH4,hM1.W 3,MRHT)
IF CMR.NE.IRI42) THEN
L1PITE(KOUT.)'NR.',NR.'IRH2-',IR42
URITE(KOUTS)'R-INVERSE IS FOULED LP'
END IF

* C UN3' RI IRH2 X IRI42
CALL TRANS2(IRH2,IRF2,H2.UM4)

C UP.4- MET IRFE X IRH2
CALL MAT1CUr4,W1M3,IRF2,I1i2,IRH,pqS)

C LIMS- H2TCRI) IRF2 XC IRH2
CALL MTCW'S.H2,IRF2,IRH2,IRF2,U13)

C 6 M3- H2T(RI)CH2) IRFE X IRF2
CALL fRIC(IRF2,F2,UfM3,UM2.uM6.U'94)

C !IOW CALL RICCATI EQUATION SOLUERTO GET PASS
C U%*-PSS IRF2 X IRF2

CALL MATIC61ME.URPF,IRF2,IH2,I)
C UM1.RKFSS IRF2 X IRH2

10-S
C FORM' RKFSS WIT4 ZEROS ADDED FOR DETER. STATES.

PRIMTZ. '".DTS-. t4tDTS
IF (NUMDTS.NE.G)THEN
DO0 2119 J*1.1RI'
DO0 2118 I.1.NUIIDTS

2111 RKFSSdI.J)&S
DO 3119 I*1OS.!RFM
II.! -NUtWTS

2119 RKFSS(I.J)aMbIl(II.J)
ELSE
CALL E0UATEIRCF5SS.W1.IRFMIt$4t'
END IF
MSG.'STEADY STATE KALMAN FILTER GAIN MATRIX.RKFSS'
CALL MMATIO(RKFSS.IRF9,IRHM.IO,KIN.KOUT.NDIM,NDIM,
NUHLb'S .NLJSAV

END
9DECK FRMAUO

SUBROUTIN4E FR?AUG(O.R,FT,BT.GCZ.HT.GCX.BCZ,FCCC-V,ICYGT.KCPO,
I FA.BAGA,GA.GUA,WM1I,UM2,UMAW'i3 U'CWID,WFE.L?rF
I MXAPXA.RA,PXUADGCZA, IRY.IFL6,CZ,IFLGSD)

C THIS ROUTINE FORMlS A SET OF AUGM ENTED MATRICES NEEDED BY THE
C PERFORMANCE ANALYSIS ROUTINES

DIMS10ON OCNDINDNDIMlR(NDIMNDIM)DFT(NDIM.NDIM)
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I .3T(NDIfi.NDIM ),GCZ(NDI NMDIM)DIKT(NDIM,NDIM ),GCX(NDIM.t1DIM),
I DCZCNVDIM,MDIMI.PC(KDIMNDIM.BC(DI9.DIM).TCDIM.DI9).
IXOCNDZM),PO(HDIM.NDIM.UMI(NDIM.NDIM)U12NDI9.NDIM)
DIENIO FA(NDIrZNMDIRa).3A(hDIMe,NDIri2),GACKDIZMDIM8)
I OANOI7.r2,hDIM2),UNACDIi2.NDIM2),UM(NDIi2,NDIM2).
I WMC(MCIM2.MDIM2),UMD(NDIM2,NDIF2).UIE(tND1M2.MDIM2),UPF
I (NDXP.NDIR),GCYCNDI9'.NDIM ),PXA(NDIIR2,NDIM'2 ),RA(NDIM2,NDIM2),
I -CZA(NDIfl2.NDIM2),PXUA(H4DI7.2.NDIfM2),GUA(NDIH2.tIDIR8)

REAL MXA(ND1718)
IfNrEGER ZFLGCZ
CHARATIER RSGaZ6*

CO~O /MAIN4/tlDIM2,HDIM3
COMMON d'MAIN2,C0MB
COMMiON /MAINI/NMDIM.MDIMI.COMl
COMM~ON / II40U/ KIM.KOUT.KPUHCH
COMMON1 /m~UNs. MSC
COMMON /MAIMS/ IC3TIC?.ICFA.CGAICGICT1CQAIRFAIRF7M.IRFT.

* I IRT.IRQAIO.LC.IRHM,'UMDTS
URXEc.KOUT,:)' ENTER A 6 IF YOU UA~r ALL THE AUJGMENTED MATRICES PR

II4TED OUT. A 6 FOR HO MATRICES TO BE PRINTED>
READCKIM.1)1O
IRFA IPP74 IRPN
t4SAUL-NDIM
NSA VZ ND IMI-
NSAVk3oMDIMZ
NSAV4-NDIM3

C
CIZIFORM AUGMENTED MATRICES THAT ARE REQUIRED WHEN FORM9IMN XA
C hA-(UT VT)T IMPLIES THAT OAP' 0
C
C
C FORM OA IROA X IRGA. IrQAOIR.WT+XCGM
C FOR EQUIVALENT DISCRETE TIME SYSTEMS IROAe IRFTIRHT

IF(IFLGSD.EQ.0)THEK
IRO-ICGT
ELSE
IRO*IRFT

END IF
DO 2703 I'1.IRO

49 DO 27e3 J.1,IRHT
z7e3 UMI(IoJ)'@

-DO 2704 I.1,IRHT
DO 27e4 J'1.IRQ

2704 UM2(IJ)*S
IFORM' 1
ND!N3.NSAV3
MDIMi2.NSAVI
CALL AUGMAT(UMW,R,UPID, IFORM. IRI4T.IRO, IRHT, IRHT)
CALL AUIGMATCQ,UMIUMC,IFORM.IRQ.IRGIRQ,IRHTI
ICQA' IRO+IRmT
IROAmZCOA
IFORtq-e

NDIM2.MSAV3
CALL AUGMATCLUqC,UPD,AIFORMIRQ.ICGA,IRHTZROA)
MSG-' THE AUGMIENTED 0 MATRIX IS s0A'
CALL PATIOCQA.IR0A,IRA.1O.KINKOUT,HSAV3.NSAV3)
IMAvhSAU3-IRF'T

C INITIALIZE PXA MXA AND STORAGE VARIABLES
Do S105 ZMXAmINSAU3

5105 MCACIMXA)WO
DO 5100 IMXA-l.rRPT

6100 MXACIMXA)-XO(IMXA)
MSG*' THE INITIAL XA VECTOR IS'
CALL MVECIO(MXAIRFA,!O,Klh,KCOiT,NSAV3)
Do siel IPXAI1RFT
DO 5102 JPXA;1.IRFT

5102 PXA( IPXA,JpXA ) PO( IPXA,JPXA)
DO 5101 JPX.1.IMA
JPXA.JPX+IRFT

5101 PXA(IPXA,JPXA)*S
DO S103 IPX.1,IMA
IpxA.IPX4+IRFT
DO 5163 JPXA-.IRFA

S193 PxAtIPXA.JPXA)00
M54-0 THE INTITIAL COVARIANCE MATRIX, PXA IS'
CALL FAI(X.RAIF.0KhK~TNA3MA3
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C%*lPXUA CALCULATION--- REQUIRED ONLY FIRST TIME THROUGH LOOP
C PxUA. VTC2)r
C Rz
C TO USE THE KLIEHfiAN M ULTIPLY ROUTINES , THE DECLARED DIMiENSION9 OF
C ARRAY ARGUMENTS M UST BE THE SAM.. THEREFORE IT IS NECESSARY TO
C FORM~ GCZA SUCH THAT GCZA(L.J)-GCZ(I,J) FOR ~.,RT AND J-L,
C .. ICBM., AND ZERO ELSEUHERE
C THESAME REASON REOUIRES CALCULATION OF RA

IT .NSAU3-IRHT
JT-NSAV3-XCftM
DO 6913 IG-I.1RHT
1DO 6014 JG-1.ClM'

6014 PCCZA(IC-.JG6.GCZCIC.JG)
DO 6013 JG-1,JT

6013 QCZACIG.JGA,.S
DO 6615 IG*IIT

DO 6015 JG-l.NSAV3
Gals CCZACIGl.JQi.*

ZR.P9SAU3-IRM4T
DO 6017 !RI@I.ZR4T
DO 6907 JRI.1.IRMT

6617 RAIRL I.. RI)..RI.JRI)
DO61 RI*1.IR

JRJmJRZ+lRRT
6016 RA(IRI,JRJ).S

DO 6018 IRI-I.IR
IRII*IRI+IR4T
Do SeiS JRI.1.NSAV3

6012 RA(IRII,JRI)*0
C RA - R IN UPPER LEFT PARTITIONZERO ELSEWHERE

IF((IFLCZEG.e).AtW.cIFLGSD.EQ.e,) THEN
C CALCULATE PXVA ONLY FOR GCZ NOT EGJAL TO ZERO MATRIX AND NOT FOR S-D
C RECALL THAT CDT(OC2) ICZ)T IS THE RICHR PARTITION OF CA

DO 6000 IPXA.1,IRHT
IPA- XPXA+XCGT
DO 600S JPXA*1,IRFA

WO0 PXUACJPXA,IPXA )%GACJPXAIPA)

NDIM-NSAV3
?NDIMI NSA'J34 I
-CALL SCALE(WNrPXUA,!RPA,IRHT.Ct)
CALL MATI(LI7F.RA,IRFA,IRHT.lRHT,PCVA)

C FVXA.PXAVT IRFA X !RMT
MlSG-' CROSS COUARIANCE, PXVA IS'
CALL !MATIO (PXVA, IRFA, IRHT.10, KIN. KOUT, NSAV3. SAJ3)
END IF

C
C
C FA- FAIL PALE *FT+$T(GCZ)(HTr pT(GCx)
C -FA21 FA22 *SCZ(HI) -FC

C
C WHERE CCZ IS THE GAIN MATRIX THAT ACTS DIRECTLY ON THE MEASUREMENT
C VECTOR, AND GCX IS THE GAIN MATRIX THATS ACTS ON THE COh-TRCLLER
C STATE ESTIMATES.t&Xz:THESE MUST RE SUPPLIED By THE CAIN !.ATRIX
C ROUTINE -- - ----------C
C
C122FORM FA

NDII*"tSAVI4I
NDIM.NSAVI

C
CALL MTICIT.CCZ.IRV"TICTT.IRMT.WML)

C VM1-TCftl) IRFT X IRNT

CALL ftATI(JfMZ.HTIRPT ZRHT,IRFT.IJr2)
C WiM2* BTCGCZ)MT IRFT X IRH

CALL MADDIC!RFT,IRFT,FT,M,Wl 1,C1)
C WMI FAIL IRFT X IR77

IF (ICIPI.ME.ICIT)THEN
WRITE(KOUT,Z)'ICVM..ICIfM,' ICBT*',ICBT
WRITE(KOUT,SZP3T AND IM ARE NOT THE SAM SIZE- WJILL CAUSE ERRORS'

* END IF
CALL flAT1(BT.GCX,IRFT,IC3TIRFP.,Ufl8)

C UliaFA12 IRFT XIRFM
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IFOqfM. I
) tlMDIM2e-tSAt~l

CALL AUMTUIL2UAZDMIF~~TIFRM
CMLA- (FAIl FA12) IRFT X IRFT+XR7M

CALL flATI (BCZHT. IRFf,JRHTIRFMi,WMQ)
*C U41- FAft IRFM X IRFT

CALL AUMTUIFMFR IIF.RTIF.RM
C UIB. (FABI FA22) IRFM X IRFM'41RFT

NDIM2.HSAV3
IFORM-2
IRFA. IRFT+IRFMq
ICFA. IRFA
CALL AUGMiAT(UMA,UMI.FA,1FORI9,IRFT,IRFA.IRF, .ICFA)
MSG-'THE AUGMENTED F MATRIX FA IS'
CALL nMTOFRAIF,0,!.OT"A3NA3

C FA IRFA X IRFA
C
CZZTFORM 9A - - - FOR REGULATOR CASE , NOT REQUIRED Y%9

CALL MATi (9T.G;CY. lEFT. IClT. IRY.UMu)
C WM1- BT(GCY) IRFT X IRV

IFORM-*2
tlDlM2.tSAVI
CALt-AUGMAT- UMP ICY, BA, IFORM, lEFT, IRY, RFPI, RY)
MSG*' THE AUGMEN4TED B MATRIX IA.IS'
CALL MMAT!O(DA.IRFA.I 1E40.KI,KOUTNSAV3,NSAV3)

C RA IRFA X IRY
CALL AUGMATcIJnl1.CY.BA.ZFORMI,RFT,IRY,IRFM,IRY)
MSG-, THE AUGM9ENTED B MATRIX BA.IS'
CALL MMAT3O(M.,IRFA,ZR'Y.,1,IOUT,h5A3,NSAV2)

C &A IRFA X IRY

C
C292FORM CA
C
C GA- GT BTCGCZ)
C ** 9 cz
C

ICALL MAT (37, GCZ, lEFT. ICIi, IRHT,UPML)
C L'Mj. vT(GCZ) IRFT X IRHT

IFORM- 1
-CALL AUO.MAT(GT,LMI,UM,IFORM,RT,Ro,IPRT,1RHT)

C RIECALL IRQ-ICCT FOR CONTINUOUS SYS,-IRFT FOR S-D SYS
C WM: (GT BT(GCZ)) IRFT X IRHT*IRQ

* Do 3001 IR-l.IRFM
Do 3001 IC-I.IRO

3,eeI umUciRc'-e
CALL AUGMATCU.3$ZLD,FOR,IRFIR,RF9,IRHT)

C LAD*CO BCZ). IRFMi X IRo+IRHwr
ICGA- IRG+IRHT
IFORM.2
NDIM2 .NSAU.3
CALL AUGMAT(UMCUPW,GAIFOR9,!RFTICGAIRFM,ICGA)
PtSG-' THE AUGMENTED G MATRIX GA , IS'
CALL MMATIO(GA.IRFAICGA.IO,KIN.IKOUT.NSAU3,NSAV3)

C GA IRFA X ICGA
C
C GtJA.GCZ(MT) GCX)

NDIM.NSAUI
NDImi.NSAVI.1
CAL.L MATlCGCZ MT,ICBTIR$TIRFT,U%2)

4. C LIe* GCZ(WT) 1CiT X IRFT
IFORfi.
MD 1M2*HSAUI

CALL AUG AT(IJ.' .GCX.GJA I!OR' ICtT. IRFT.IC?M,IRF()
MSC-ITHE AUGMENTED MATRIX CUA IS'
CALL WATIO(GUA.ICLT,IRA,10.IN,0'JT,MSAV3,HSAU3)

C GUA ICET X IRFA
0szs:ZUAUGMENTEV SYSTEM MATRICES Now AvAZLBLE FOR COMPUTATION
C

NDIM.NSA'J
KrIMI .NE.!
MDIM2.NSAUJ3
NDlM3*NSAV4
END
SUDE~ PROUTI PERFALCIRY.IFLGCZ 'mxA,GCYGUA.PXA.0XUA.IFLGSD,

I RA,GCZA. ,AMGAWEWiUUVIKOI"XOTPO" PXTOJT,
I mxAMIN,ftAMAXPXTN.hPXTMA,MIM.MAXPUMZMPUMNPAMui1TA

131

Li



CHARCE S6O
p EAL W ,jM1NI7 NIIr),EAT DMDM)WENIENI2.fFMI2

iNDI~a) ,U,(NCIjoj ),Uxv CNDIN2,
M XA(NDIM2).PXA(NI.Nl ),PXUACN MDl?

1
j2.

I YD(HDIM3l.MxA~hNDIM.Ml M jN(NDZM)M).PUAX(DM).GCZA
PXlTMt(DlM.pWtTMAX(IM c)PU IN MFC

i NDIM).IMT8A(HDIM2,NDIM
2 )

INTEGER IFLtCZ
DIMENSION COMIC1).C01i2(I)
REAL MU(hDIM ).PUUCNDIMi2tIDIM2)
COMMON /RNTIPI' RNTIMEbEt'TIM
COMMON ,MA~m4/MDfl2.MDIIM

3

COMMON /MAItiS/CO"2
CommoN ,MAINI/HD1Ft.NDlnI,COMI
COMMiON / thou/. K.M:OUl,KPUMCH
COMMON IMAU*MS/ 14SO ~'IF
COM'MON 1MAINS/ I,T.I:CBM.ICA.ICGAIccmIcGrIC-A,IRFR".RT

I IpMT,IR9A,IOlLGIRM.lUTS
NSAVI.Nm{M

hSAV3*ND!M2
NSAV4.t4DIM3

CIZ1PEPOR"qANCE ANALYSIS ROUJTINE
C THIS 1S A CONTINUOUS TIME MEASUREMENT PERFORMNCE ANALYSIS
C ROUTINE FOR EUALUATIMG CONITINUOUS TIME CONTROL SYSTEMS DRIVEN BY

C WHITE 04USSIA14 NOISE. IT COMPUTES THE MEAN AND COVARIANCE OF THE

C OF THE TRUTH MODEL STATES .THE CONTROLLER $TATES.AND THE CONTROLS
C GENERATED. a SET OF AUGMZNTED MATRICES IS USED TO DO THE
C CALCULATIONS ---Ya(XT USTAR)T. XA.CXT )CM)T .. TWE PERFORMANCE
C ANALYSIS ROUTINE IS DEVELOPED IN A ROSTERS THESES FOR AIR FORCE
C INSTITUTE OF TECHNOLOGY BY ERIC LLOYD, TITLE 'ROBUST CONTROL
C SYSTEM DESIGNl'
C
C

4f C~ltMXA,PXA CALCULATION--- THE MEAN AND COOJARIAMCE OF THE XA VECTOR
C FOUND USING SOLUTION FORMS OF THE PROPAGATION EOUATONS
C KLIEMMAN ROUTINES ARE USED TO PROVIDE THE SOLUMIONS
C IIh TRE FOLLOWING TWO EQS. THE FIRST OCCURRANCE OF PXA OR l XA
C I5 THE VALUE AT TIME T+DELTI'. THE SECOND ---- AT TIME 7

C PXA-EAT(PXA )EATT+INTGA
C MXA*EAT(MXA 34IKTBA
C SEE DEFINITIONS BELOW FOR EAT *INTGA, INTRA
C
C NOTE SINCE THIS PROGRAM CONSIDERS.ONLY THE REGULATOR CASE,

C Y- THE DESIRED INPUT- IS ASSUED - ZERO
C
C
C MXAO.CE(XO) WT &(XO *)T E-THE EXPECTED VALUE OPERATOR
C PXAOI PO .6
CS
C
C EAT- EXP(FASTXME)
C IMTRA- IHTEG(EAT)DA FOR CONTINUOUS TIME SYSTEMS
C . BAD FOR DISCRETE SYSTEMS
C ItITGA. INT(EAT(GA)OA(GAT)EATT) FOR CONfT TIME SYSTEMS
C . GDA(ODA)GDAT FOR DISCRETE TIME SYSTEMS

LCOUNT*O)
IRN.NIT(RTIEDELTIM)
WRITE (KOUT, I)'EtITER A C IF YOU QWT NO PRINTS OF PXA. PUJI MXA.

i AND %J MATRICES DURING THE PERFORMANCE AHAlLYSIS. ELSE ENTER TH

I MUMtER OP TIME INCREMENTS ttTWJCEN PRINTS( THERE ARE '.RN.' TOTAL.

I TIME INCREMCKTS IN THIS RUN0'
READ(KIN, t)ZPCHTL
IF C IPCNTl..EO.S) THEN

ELSE
10-6
END IF
DO 5603 IN.MSAUI
P~iL(J,IN)4*
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Mr6AvurXIN 1.5

V PXTMIN( IN .0
PXTMAXE IN 1.0

MUPIAXC fljj#.
PL3PAX(I IN 1
PUPMt4(IN).0

SP03 CONTINUE
UPITE(KOUTX:PEMTER THE ML'?iBER OF SAMPLE PERIODS DESIRED BETEEN~
I PLOT POINTS(NAX I"0 PLOT POINTS) THERE ARE ',IRh,' SAMPLE PERIOD
IS REQUESTED FOR THIS R1J>4'
READ(KIN,1 IIFLTPS
DVLPLT-DELTIrM:ZPLTP1S
DO 5090 ITLflP&l.ZRN

0 ~IF(IO.EQ.5) THEN
JJ-ITLPIP-1
IPMT;I OD(JJ, IPCNTL)
IF(C PNT.E0.0).OR.(ZTLMP.EQ.IR60! THEN
TIPE*JJtDEI.TIMq
URITECKOUT,Z)TIME. '.TIMiE
ISGo' - PXA1-
CALL MATIO(PXA,IRFA,IRFA, IO,KIN,KOUT,NSA4J3,NSAU3)
MSG-' PUlP
CALL MNATIO(PWf.IC! .ICIi.10,KIN.KOUT.NSA('3.hSAV3)
IMSGO MXA'
CALL NMECIOCNXA,IRFA.10,KIN,VKOUT.NSAV2)
,MSG. 'MU'
CALL MVECIO(MU ZC3M, 10. K3N,KOU7.NSAVI)
END IF
END IF

C NOW WANT TO STORE FOR PLOTTING, MXT,PXX."U.PUU
DO 123 IWRv1.IRFT
MXTOUT(IUR )6MXA( JUR)
PXTOUTt IWR I PXA( lUR, ZUR)

MXAMAX(IWI~oAXtIXAMAX(IURI.M4XA(IUR))
d ~PXTMAX( ZUR) &MAX (PKrfqAX( ZJ.R) pXAflR,]IR))

DO1423-IIB

MUOU T IUR )-lU( IhR I
PUOUT(IIJR).PUJCIUR4UWR)
MUUMIN(IUR).MIN(MWr#INUURi,I*U(IUR))
MJMIAXI IUR).MAX(MUMAX(IUR).f9U(IWRI)
PUnAX( IUR)-f'AX(PUMtAX( UR ),PUU(IUR.XUR))

124 PLWIMIIR)-MIM(PUMIMCIUR).PUU(IWR.IUR))

Cr::zz NO CROSS CORRELATION TERMS ARE PLOTTED
C

ND IM6.NSAVl
IPTCTL-l9ODCjJ.IPLTPS)
IF (IPTCTL.EO.e) THEN
CALL STORED(LOO,,RNTIME,DELPLT,LCOUNT.IRFTIRFT,ICDM.lCB",
I PXTOUJT.PXTOUT,MUOIJTPUOUT.NDIiE)
LCOUNT*LCL1T4 I
END IF

C NOTE THAT YDI IS RESTRICrED BY VALUE OF LCOLNT TO BE CO"1TA1T
C SETUEEh PLOT POINTS

IF (LCOUMT.QT.1"0)TMEN
C RESET LCOUNT

LCOUKTs is..
END IF

CtZZUPDATE PXA.XA
C

NDIMONSAV3
NDIMI@NSAV3*1
CALL MAT3( IPA, IRFA.EAT,PXCA,WI'E)

*CALL MADD1(RFA !RFA.WE,INTGAPxA,c1)
CZZZDXA AT NEW TIME NOU AVAILACLE
C MXA' EAT1MXA0,zNTEacrAT($A))(YD)

*DO 1314 IKZ*1.IRFA
1314 VVN3IK)mt

DO 1115 Itol,IRFA9 DO 1815 IJ1.,IRFA
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1915 &V3(IKI.UU3(rK?*EATCfl,IJ)Zt XA(IJ)
DO 1812 IMR.1,IRFA

12E12 UV4(IfR).RNA(IMR,)D(LCOL4T)
DO 1813 1J.1 IIRFA9 12~~I13 tXA(IJ).UU3(IJ)+WV4CIJ) .U TEMA FNIEVASMD4

CZ:ZPMU,PUIJ CALCU ATION FOR ZERO MEAN MEASUREN"T NOISE
C MU.G*JA(MXA.)+CCZ(MIJT)#GCV(YDI....MTTEMA FNIEVASMDo

XI.YD(LCOUNT)
NOZN.NSAUI
NDII1.SAUI4I
CALL SCALE(UIICCV.ICBM,IRYXI)

C WMI1 G'^Y(YD ICBMf X 1
KDiM-NSAV3
NDIMi .NSAU3*1
Do 1917 IJ.1.ICBM

1817 WU3(IJ).S
DO0 1816 IJ.1.ICBN

aDO 1916 IK-1.IRFA
1816 bV3(IJ).UV3(IJ)+GUA(IJ.fl911 XA(IK)
C U'3*GUA(MXA) ICBM X I
C ADDED TO WMI ABOVE TO GET MU

DO 329 I.1.ICBM
329 MU(1 ).UU3(lI)*.'N(L 1)
C MU IRFA X I ----- NOW AVAILABLE-----
ClzPUU CALCULATIOP4.PUU-GUA(PXA )GUAT+GUA(PXUA )GCZT,6CZ(PXCUA)GUAT4
C GCZ(R)GCZT

CALL MAT3(ICi. IRPA.GUA.PxA.PUU)
C PUU.CUACPXA)GUAT ICBM X ICBMI
CzzxtIFLGCZZZZ:

IF CIFLGCZ.EO.E) THEN
C SINCE GCZ NOT EQUAL TO ZERO CALCULATE OTHER TERP.SOF PuU
CttttttlPLGCZ~g:Izz

IF tIFLGSD.EQO) THEN
C DONT DO THIS FOR S-D CASE

CALL 9T C ,PUc~jFdfTg )
CALL MAT4(UMF.GCZA.IC3MIRHTICPnDUME)

1 CALL MADDI(IC3M.ICBM,PUU.UMEUMFCt)
C LPFr.CUA(PXA)GLI4T+GUA(PXUA)GCZ7

CALL MAT4(GCZA,PXVA,ICBN,IRHT.IRFA,PUUJ)
CALL IMAT4(PUU,GUA,IC3M,IRFA,IC3M.UME)
CALL MADD1(ICRDiIICBMWME.U19F,PUU,CI)

C P I-GJIA(PXA)CUAT4GUA(PXUA)GCZT.CC.ZCPUXA )WJAT
END IF
CA~LL ?AT3(ICBM,IRHT CCZA,RA.WME)
CALL MADDI (ICBM. ICRf ,LMEPIJI.WMFCI)
CALL EQUATE(PUU.MF,ICI ,.ICi)
END IF

C912 PUU NOW AVAIL.ABLE ICBM X ICBM

C
C
SCOO CONrrNUE

CALL STORED(LGG.RN(TIME.D-LTI.LCOU1T.IRFT. IRFr.ICIM'. IC!M.

I FXOUT.PXTOUT.MUOST.PUO'JTNDIMSI
C STORE MIN VAL.UE AND SCALE FACTOR IN4 2 LOCATIONS FOLLOL!IN:

c DATA VALUES --FOR USE IN PLOT ROUTINE
C NOTE TH4AT 3.5 INCHES IS CHOSEN HERE AS THE AXIS LEMGTI
CALL STORED(LQ.R1TME.DELTIr,LCONMTIRFTIRFT,lCBM.ICBM

I F.XAiI,PXTh1.MUNl,pWriNNDIM6 I
DO 12S IUR.1,IRFT
!.XTOUIUR .MXAMAXCIWR)-XAMI(IUR))/3.S

15PXTOUTCIUR).CPXTMAXCILR)-PXTtIC1R))-3S
DO 186 IUR-I,ICtM
MU)OUT( IVE ).(IVAX(IUR)-MUMIH(IUR))/3.S

Bec PUOUTCIUR)aCpUmAxc IwR)-PMIN(IUlR'f
3 .S

CALL STOREDLLOC RNTIME.,DELTIM,LCOUNT,IRFT,?RFT.ICDMZCDM,
I NM(TOUT, PXTOU+ %UOUT PUOUT NDIMCI

C CALL O STOkED WITH LCOUNT C t INDICATE THIS DATA RUN COMPLCTE
LCOUNTO-I2 RTMETMLopTIF.RTIlCM
CALL STORCD(LOO iT .CTPCUTIF.RTIDeCM
I MEXTOUI .PXTOU+. MUOUT*PUOUT.NDIM6)

NDIMONSAV1

NDIMZ*NS*V3
KDIM3*MSAV4
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C RESET 10 TO SOME NONZERO VALUE TO AVOID TERMINATING THE PROGRAM
C UHEN RETURNING TO MAIN ROUTINE, LOGRP

10-25
END

tzECK MYPLOT
SUBROUTINE. MYPLOT
END

IDECK AUCMAT
SUBROUTIHE AU AT(AA2,A3IFORMIRAICIA1,IRZ.ICAE)

C

:tTINDINE,"DIM3 MUST BE SET IN THEM CALLING POGRAM BEFORE USING
Cz:lZNCIME.mDIM3 MUST BE SET Ih THE CALLING PROGRAM ?ErCRE USING
czzu;Z THIS SUERCUTINE. THEY MUST BE DECLARED IN A COMMON BLOCK
C LABELED --MAIN4---
C THIS SUBROUTINE FORMS AUGMENTED MATRICES OF THE FORM
c IFORn-I A3-(A1 At)
C IFORM-2 A3-(A1 A)T
C
C
C IRAI.IRAZ°ARE ROJ DIMENSIONSIICAI,ICAZ,ARE COLUMN DIMENSIONS

DIMENSION AI(NDIM2.NDIR).Aa(MDIMZNDIMZ),A3(HD?3,h ] 3)
CO"0 mrAlh4MD!M2.NDIM3
IF (IFORM.E .'1) THEM

C FORM THE AUGMENTED MATRIX A3-(Al At)
DO It Ii-1,IRAI
DO 11 UI.I1oICA111 3(II°%Ij)-Aj(II1I1%)
DO 12 IV-I.ICA2
IVI- IV. ICA1

RETuRN
END IF

C FORM AUGMENTED MATRZX A3*(AI AR)T
IRA3.IRA1.IRA2
ICA3-ICAI
DO 14 II-1.ICA3
DO 13 IlI-oIRAL

13 A3(I1II):A11111,II)
9DO 14 IU-,IRAE

IVIvIV IRA1
14 A3(I.UI.II).AB(IV..Il)

RETQCN
END

IDECK MVECIO
SUBROUTINE MVECIO(A,NULMEL, IOKIN,KOUTNDIM)

C TRIS SUBROUTINE READS PRINTS ENTIRE (PORTIONS O
r ) THE VECTOR

L A, DEPENDING ON THE VALUE OF ---10---. 3O-I---READ ONLY
C IOB---READ AND PRINT, 10.3 READ SELECTED VALUE, 10%4

PEAD AND PRINT SELECTED VALUES
1O----PRINT ONLY

C TO USE 10-3 OR A THE CASLLIN PROGRAM MUST IMITIALZE THE VEC.
C rzzZTHIS ROUTINE SETS O0---- UHEN NO DATA IN ItiPUT FILE
C
CREAD IS FROM UNIT SPECIFIED BY CALLING PROGRAM IN KIWURITE IS TO
C. KCUT.HDIM IS THE DECLARED DIMENSION OF A IN THE CALLING

C FROGRAM
CHARACTER MSCI6G
DIMENSION A(MDIM)
COMMON 'MAUNS' MSG
IF (IOEO.I.OR.(IO.EG.2)) THEN

C READ ENTIRE VECTOR
IRITE(KOUTI)'ENTER ' NJMEL.'ELEMENTS)'
READKINI.END-29)(At ),I2,NUMEL)
END IF
IF (IO0.C.1) THEM
RETURN
END IF
IF (IO.EO.3).OR.(IO.£E.4)) THN

C READ ONLY SELECTED ELEMEKTS. THE FIRST HJMER ON EACH CARD

C IS THE SURSCRIPT, THE SECOND IS THE DATA ENTRY

CI:%t:ZOH3TE ONLY ONE DATA ENTRY PER CARD

Cgz1z9Zt FIRST CARD MUST COTAIN THE TOTAL HJMSERR Or ENTRIES 
TO RE

C READ
"RITE(KOUT#9),ENTER THE UIRER OF ENTRIES TO SE MADE)'

READ(KIN,%.ENDm
2 9 )NUMEKT

DO e IT.1.NUMENT

URITE(KOUT.Z)'ENTEP THE ELEMENT NUMIER .THEM ITS VALUE)*
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READ(KINz.END. )I.ENTRY
A( ZJENTRY
IF (IO.EQ.4)THEN
URITE(gOUT,33), ,
,RITECKOUTz)MSG
WRITE(KOUT.9)'ELENENT NUntBER * ENTRY)'
URITE(gOUT, 11 )IA( 1)
END IF

2e CO'*TrIhUE
RETrUP

IF ((IO.EO.a.OR.(IO.EO.S) THEN
C TO GET HERE 10-2 OR S SO PRINT OUT ENTIRE VECTOR

URITE(KOUT,33)'
URITE(KOUToZf)RSG
URITECKOUT,')' THE VECTOR HAS '.LIAEL, ' ELEMENTS'
LR:TE(KOUT,2)(A(I)3.I-I,hUAEL)
RETURN
END IF
RETURN

29 PRINTZ."EMD OF DAT REACHED DURINM INPUT IN !MVECIO'

C ZZZ*% T+iS ROLUIWE SETS 10-6---- UHEN NO DATA IN IMPU! FILL
33 ORmRAT cAje, ,o !FRRTZ, XII:'6

21 FORMAT(I4,L1X,12.6)

RETURW
END

IDECK NlAI0
SUlPROUTINE MMATIR.C. I1C, N.KOU.NDI,.NDII'I)
CHARACTER MS02S
DIMENSION A NDIM,NDIMI)
COMMON /MAUMS/ MSG

C THIS SUBROUTINE READS AND/OR PRINTS THE MATRIX A DEPENDING O THE
C VALUE OF 10. IT READS FROM UNIT SFP'CIFZED BY KIN AND WRITES TO UN:T
C gOUT. 10,1--READ EhIRE ARRAY 102--READ AND PRINT ENTIRE
C
C ARRAY. 1O--3---READ SELECTED ELEM ENTS OF A ZO-4---READ AD
C PRINT SELECTED ELEMENTS OF A 10S -- PRINT ENTIRE ARRAY1 UDII,NDINI ARE THE DIMENSIONS OF A IN THE CALLING PROGRAM

C :zZZZNOTE IF I'3 OR 4 THE CALLING PROGRAM MUST INITIALI2E
C THE ENTIRE ARRAY BEFORE CALL
C z:zttVrTHS ROUTINE SETS 10 -0 ---- UHEN THE INPUT FILE IS EMPTV
C

IF ((IO.EQ.1).OR.(IO.EO.2)) THEM
C READ ENTIRE ARRAY IN FREE FORATR0U MAJOR ORDER

URITE(KOUT,Z)'ENTER ',(IRZICI,' ARRAY ELEMERTS IN ROW RAJ ORDER>'READ(r INZ,ED.g9(A(IJ),J,1,IC),II, ,IR)-

END IF
IF (IO.EQ.I) THEN
RETURN
END IF
IF ((IO.EQ.3).OR.(ZI.EG.4)) THEM

C READ IN SELECTED ELEMENTS OF A
C THE FIRST CARD I" THE INPUT STREAM RUST CONTAIN THE TOTAl.
t NUMBER OF ELEIMENTS TO BE READ IN. ONLY OE ENTRY PER CARD.
C TH4E FIRST ITEM ON EACH CARD IS THE ROW, THESECOND IS THE COL THE
C LAST ON EACH CARD IS THE DATA FOR THA' '..CATIOM
c FREE FORMAT IS USED

URITE(KOUT.)'EER T4E NUIQER OF ENTRIES TO IE MHADr.>"
READ(K I.1.EhN-29 3UEL
DO 20 I-1,%UEL
UQITE(KOUTZ'ENTER THE RO.,AND COLLMNI FOLLOUED IV ITS VALUE)'
READ(KIN.t.Etb2, ?Il.J.ENTRY
A;II J),ENTRY
IF (tO.EO.4) THEN
URITE(KOUT.33)'
WRITE (gOUT,t )fSG
URITE (KOUT 2)'(', II,' ',J, ),*CII.J)
END IF

30 CONTINUE
RETURN
END IF
IF ( IC.EO.2).OR.(1OEO.$)) THEN

C 10 • 2 OF S Ir HERE SO PPINT ENTIRE ARRAY
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WRITE (K0UT, 33)'
URITE(KOUT.Z )MSC9 URITE(KOUT.9)' MATRIX SIZE IS '.IR,' X( .IC
DO 49 I-l,IR

49 WRFTE(OUT,4S )(A(I.J ),J.L.IC)
33 FCRMAT(AIO./)

END IF

29 PRINT 1,'END OF DATA REACKI VjlN INPUT'
C txz1zzrTH:.S ROU7INE SETS iG WwrN THE INPUT FILE IS EtiOTY

RETURN
EUD

IDECK CLOGRS
SUBROUTINE CLOGRS(GCSTRFM,MRFSSHM,GCX,GCY'.GCZ.
1BCY.BCZ.FC,YD,RM,GM,FTRT,GTQT,RTHT. IRY. IFLGCZ.UMI
SV2,W,PO,GM.U4,UMSWMS,6

I UUI.UtJ2,UUUUXX.XO.UXU.U97.UIW)
C THIS ROUTINE PERFORMS SET UP FOR USING THE CONTINUOUS TIME
C PERFORMANCE ANALYSIS FOR AMLOG REGULATOR

DIVENSIONGCSTRCNDIM.NDIfl),FMNDIS.NDIM).M(NDIM.DIl),PO(NDIM,
INDIM.L"CNiDIM,ND)CCX(NDIMI.NOBIr.GYNDI.NtDIM).CZ(HDZP,tl~m).
1 DCYgND IM. NDI),Z C NDIM,MD Il) )FC (ND IMMD IM, YD(NDI3).rlI (D:F.,

1 R(DIMDIM).T(DIM.NiDI),HTi(DI.D1M),V(NDtMI.W;FCir

I UXXNDIM,HDM).M4(ND,KDIM) wFM5("DIlNDIM)
I UMstND!M,NDIM),.uXU(NDIM,NDIM,.Lfl ?CNDINDIM):WnuCNDrM,KDIM,
DIMENSION COP1ICIl),COr 2(Ii
CHARACTER MSGZSS
INTEGER IFLGCZ
REAL RKFSS(NDIM,NDIm)
COMMON ,NAIM4/NDIM2,NDIM3

COMMON /MAUNSI' M'SG
COMMON 'MAINI' MDMMIIC~
COMMON /KAIN2/ COM2
COMMON .RNTIM'Rff7IME ,DELrzP!9 COMMON /IMOU/ KIN.OUTKPUNCH
COMMON /MAINE/ICBT.ICBMICFA.ICGA,ICGMICCTICGA.IRFAIRFM.IRFT,

, IPHT. IROA.IO,LQG. IRHM,MNft.DTSUkITE(KOUT.1)'DO YOU W~ANT TO CALCULATE EIGEHVALUES OF THE TRUTH MO
iDEL AND CONiTROLLER MODEL F MiATRICES, Y OR m>,
READ(bKIN.23.END-2933) MSG

23 FORMATCAI)
IF CMSG.EO.'Y') THEN
WRITE(KOUTI) '
WRITE(KOUT,*ZVTHE EIGEIUALUES OF THE TRUTH MODEL F MATRIX'
CALL MEIGMrF7.UVl,WV2oIRFTU~lI

URITE(KOUT.Z)'THE EIGENUALUES Or THE CDNT. MODEL F MATRIX,
CALL MEIGM(FMUU1.WUE.IRFMW91)
END IF
CALL CKFT(FM.GM.RM,HM.KIiMDTS.RCFSS,QM,UM.M2W3.UM4WMS,WMG,
I IRFM. IR4M, ICGM,GCV,GCZ.BM. ICSM)

c GCZ.GCY. IN GALL TO CKFTR ARE USED AS DUMMY ARRAYS FOR HE .F2
CALL CDOMFMWXWUGSRIFcmwLWBW3u .WSW6

wRITEoKOL1T~t,h'ER THE TOTAL RUN TIME AND THE TIME INCREMENT>'
IREAD(KIN.1 .EHD-293)RNT!ME. DELTIM

CALL IDK~T(IRFM.UMI.ClI
C WMIfl~S IRFM X IRFM

CALL MATI(GCSTR.UMI.ICBM,IRFM.IPFMGCX)
loes
MSG. 'CCX FOLLOWS, OCY,GCZ SET60'
CALL MMATIOCCCX ICBM IRFM IO.KIN,KOJ7..NDIrMNDIM)

C NOTE229212 OTHER GAIN MATRICkS.GCZ.AND GC SHOULD BE CALCULATED IN
C THIS MODULE FOR USE IN THE PERFORMANCE ANALYSIS ROUTINE.

Do 2962 IIZ.1ICIM

DO292902..IH
IFLGCZIl-PE NLSS OTN SSI

C IFLOCZ, I INDICATES GCZ 19 SET To ZERO--RFAAYI OTN SSI

9 Do 2903 101160
2soYD(I)*e
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IRY-I
DO 1723 Z.I.ICBM
DO 1723 J*1.IRy

1723 GCY(I.J)-o
C FORM SCY

DO 178a 1-1.IRFM
DO 1702 J-l.IRY

C YD IS ALLOiWED TO ONLY BE A SCALAR AT THIS TIME
C FORMBCZ

CALL iGUATEBDCZ.RKFSS,IRFMIR4r)
MSG.'RCZ FOLLOUS,BCY.S'
CALL MMATIO(SCZ. tRF,IR1.I,oIN.ourt.NDiM,Di ,

C FORM FC
CALL MATI(BMGSXIRFM,ICB.IRFM,UMI)
CALL MADDI(IRFM.IRFMFM,UMI.,Lt2.Cl)
LRITE(KOUT.2),
UP.ITE(KOUT.:,'DO YOU WANT TO CALCULATE THE EIGENVALUES OF THE CONT
IIUOUS-TIME LO CONTROLLER? V OR to'
READ(KIN.23 )MSG
IF (MSG.EO.Y' ) THEN

WRITE (KOUT,I~oT4E EIGENVALUES TH4AT CORRESPOND TO TH4E POLES 09
I THE COKTINUOUS-TIME LO CONTROLLER ARE...

CALL MEIC(WU,U1.UU2,IRMLJMI)
END IF

CALL MAT1':RbFS,HM IRFM.IRHM.IRFMWMI)
WRITEC(ZOUT.Z.1'
WRITE (KOUT, 9'IDO YOU WANT TO CALCULATE THE POLES Or THE CONTINU

IOUS-TIME KALMA4 FILTER? Y~ OR N)'
READ(I.23 )ISG
IF(MSG.EG. 'V') THEN
CALL ViADDI CIRFM. IRFMFM,WMI1 UM7,Cl)
URITE(KOUT,*)'THE EZOENVALUES THAT ARE THE POLES OF THE CNOTINU

IOU$-TIME KALMAN FILTER ARE....'
CALL EINh(UM7,UVI.UVa,IRFM.UM8)

END IF
CALL M'AD(IRFI,IRFM,UM2,UM1.FC.C1)
MS5G*' FC FOR THE LOG CONTORLLER IS'
CALL MMATIO(FC. IRFP1DIRFM,IO.KINKOUTNDIPINDrm)
URITE(KOUT~t)'
URITE(KOLJT,Z)'DO YOU WISH TO CALCULATE THE EIGENVALUIES OF THE LO-. -

9ICONTROLLER F MATRIX9 Y OR N),
REP4D(IM,23 )M'SG1 IF (MSG.EO.'Y') THEN
WR'ITE(IZOUT,S)'
URITE(KOUT,Z)'TNE EIGENVALUES OF THE LOG CONTROLLER F MATRIX ARE'
CALL MEIGN(FC.1JU1.UU2.IRFM,LMI)
END IF
RETURN

2933 10-0
END

* ZDECK DASI
SUBROUITINE DASI(GOT.RM..CB.1M3.I.RFM)
DIMENSION GOCTfNDIM.NDIM),3!i(ND1MNDIN),U(nlIMNDIM).

I W3(NDIM,?DlM).COM~1C),COM~tI)
c THIS SUBROUTINE MODIFIES GQGT AND RETURNS THE MODIFIED
C VALUE IN GOOT. WHERE COOT IS USED IN THE KALMAN FILTER
C GAIN CALCULATIONS. THE MODS ARE IN ACCORDANCE WITH THE
C THE TECHNIQUE DEVELOPED BY DOYLE AMD STEIN IPI OROBUSTNESS
C WITH ONSERVERS'.IEEE TRANS. ON AUTO. CotITROL.UOIL A024,
C NO. 4,AUC. 79.PGS 607-611-
C
C THE VALUE RETURNED IN Q=OT IS 00 . HERE 00 IS
C OOvOOGT+SQCSG~vMCV~lMT)
C
C 50 15 A SCALAR DESIGN PARAMETER THAT AS 1T APPROACHES
c INFINITy. CAUSES THE LOG CONTR6LLER TO RECOVER THE ROBUSTNESS
C PROPERTIES OF A FULL STATE FEEDBACK CONTRCLLER.
CTHE MATROX--V-- IS ALSO A DESIGN* PARAMETER WITH THE RE0UIREPENT
C THAT IT BE POSITIVE DEFINITE. 3M---- IS THE CONTROLLER PrODEL INPUT
C MATRIX. C04T --- IS THE CONTROLLER MODEL ImouT NOISE STRENGTH
C MATRIX OM PREMULTIPIED By GM AND POST MUTIPLIED BY GMT WHERE GM IS
C THE INPU+ NOIESE MATRIX.

CHARACTER MS50160
COMMON ,MAIKI/NDIMNDI 1.COMI
COMON /MtAIN2/ COM2
COMMON /INOU' KIN.KO4JT,XPUNCH
COMMON /mAUNS/ MSG
URITE(KOUT,11)'
URITE(KOUTt)'THIS ROUTINE MODIFIES THE VALUE OF OMfOM)CMT

I USED Ihi CALCULATING THE KALMAN FILTER GAIN, RKFSS.'
WRITE(KOUT.1)'THE MODIFIED 0 IS v GMCOM)GTSOIIBV~t~iWT)HRE
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I SO 1S A SCALAR DESIGN PARA9ETER-AND V IS A POS!TIVE DEFINIITE
IliATRIX rESIGN PARAM~ETER. THrE LARGE-R Soo THE MORE ROBUST THE CONTRO
IL. SYSTEM~ UIL. BE.'

p 9 DO 5 IMPI,iS0B
UPRTE(KOUT.41),

11 FORMAT.:Aie,/)
WRlTE(KOUT.t)'EMTER I-To INPUT so, 2-TO INPUT U 3- TOCALCUt.ATE M'OD

IIFIED 0, -4- TO EXIT THIS ROUTINE>'
READ(KIMZIz)ISEI.
GO TO (1.2,3,4)ISEL

I URITE(KOUT.11)'
URITE(Y.OUT,%)'ENTER SQ)e--)'
READ(IKIN,Z )SO
GO TO 5

a RITE(KOUJT.Z1)'
WRITE (KOVT.t)'J IS INIALIZED TO .ZERO UPON ENTRY INTO THIS OPTIO

IN.
DO 7 I*1,NDIM

* DO 7 J1%,KDIM
7V(X.J)-e

WRITE JKOUT, t)'ENTrER I.0 OPTION FOR POSITIVE DEF V(SEE INPUT ROUTIN

READ(K!N :)I0
MSG.'DESNON PARAMETER V MATRIX ENTRIES'
CALL MM-ATIO+UIC;1 CBM.bO.KIN.KO(T.ZM.NDZM)

a dALL M4T3UlRF.IRFMBM ,U,3)
C ij3.BMtV)p ", 1RFM X 1RPM

CALL MADD1(IRrM,IRFM,COCTL? 3,V,501)
C V IRFM X IRPM HOU CONTAINS THE MOD. VALUE --- 00

MSG-'THE DOYLE A4D STEIN MCDIFED 00 MATRIX IS'
IO*5
CALL MMATIO(U,IRFM,IRFM,IO.,ZIN,KOUTNDrM,NDIM)

S CONTINUE
4 CONTINUE
C 00 IS ACCEPTABLE SO PUT INTO GOGT

DO 20 II,IRFM
DO U0 J*41,IRFM

2e GQ^STCIoJ).UcI.j)
RETURN9 END

IDECK "YINTG
SUBROJ'rINE MYINTOPMIITA,TBA6.Er,GA,0AFABA.IRFAICGArRY,
I IROQI)_'

C THIS SUBROUTINE SETS UP THE NECESSARY~ INTEGRALS FOR USE ByC THE PERFORMANCE ANAL. ROUTINE. THE STATE TRANSITION MATRIX.
c 'EXP(FAtTI1 E)aEATo INTEC(EAT(GA, OA (GAT) EATT), AND 

-C PITEG(EAT (RAJ). UI E IS A DLqqlY WORK SPACEREAL PHI (NDIZ.NDIM2) ZKTCACND1n2,NDI.2).INTBA(?tDIM2.NDIMe)

IGA(NDIM2,NDIMa),FA(N~lI-2.DIM
2 )

DIMENSION 0OmjcI),COm2cI)
COM'ON/MAIN1/NDIM.NDIM1 ,C"M
COM'OK/MAINo' COMP
COMMON /IKOU' Kt~i,KOUT,tKPUm:H
COM04 /'RNTIA-.RHTIM, bLTIM
COMMON /MAIN4^.NIM2.MDIM3

rcxr.FORM QA(OA)GAT --NEED FOR KLIEHMAN ROUTINE
C

NSAJI NDJIq
NSAIJ2.NDIMI
NDIM&NDIM2

CALL DSCRT(IR7A,FA,DELTIM,INTGA,UME,le)
C UPIE-INT(EAT)

CALL MATI(UME,BA IRFA.IRFA.IRINTBA)
C INTBA. INT(EAT)DA iRFA XIRY NEEDED IN MXA UPDATE

CALL MAT3(IRFA,IR0A,C*,OAPHI)
C PHIGAC0A)(GATI IRFA X rRFA

CALL INTEG(IRFA,FAD PHI. INTGA,DELTIM)
C PHItEXPCFA) IRFA X IRFA
C JKTOA-IN-EGAAL C EXP(FA)(GA)(OA)(GATT)(EXP(FA)7)) IRFA X IRFAC

ND !M-NSAVI
NDIMI.NSAV2
RETURN
END
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%DECKC DSCRTZ
SUEROUYTINE DSCRTZCUMl.PHINIRDYD,3CZD1RNDELT1M.FC.,CY.

I IRY.DCZIRHI .PHIT,OTD,3TD,CT,0T.Fl.3T,IRFT,ICGT.ICBT.IRNT.
IRTO,PTCCX, ICFM)

C THIS. ROUTINE DISCRTIZES A CONTINUOUS TIME LQ^ CONTROLLER U'SING
C FIRST ORDER APRROXIMATIOMS TO THE REQUIREC INTEGRALS
C AND PROVIDES A!4 EQUIVAL.ENT DISCRETE TIME REPRESENTATION OF THE TF>J7H
C MODEL FOR USE IN THE PERFAL ROUTINE

REALVM I.CNDIM.?1DIM),PHIM CtDII'INDI7.),BCYD CNDII9.NDIN).
I BCZD(HD!It.NDIM).FC(NDIM.NDIi), RC%'(NDIM.NDIM),
I DC2(MDIMND),PHIT(DrNDI),OTD(NDIi.NDIM).
I BTD(NDIM.HiDIM),CT(NDIM,DI).T(DI,DI).,
I FT(NDIM.MDIN), lT(NDIM,NDIM').RTD CtDIM,NDIN),
I GCX(hDIM.NDIM,RT(DIN.NDIM)
REAL COMI1(l),COtKtCI)
CH4ARACTER MS02I
COMM0K/iAIhI1.'DIP,MDIN1.CONI
COMMOtVNAIt48/ COM2
COMMON'NAIh4'NDIME. NDIM3
COM90I - INOU/KI N.KOLrT ,PUHCH

CALL IDKTCIRFR.UMiI.Cl)
CALL rDRTCIRFN.UP!I.CI)
CALL MADDI(IRFM rRFM U'.FC,PHIM DELTIM)

C PHIM I#FC(DELTI1 ) 14T ORDER APPROX T6 STATE TRANS MATRIX OF CONT
C CALCULATE OW --CTR

CI.-'.e
C RECALL THAT GCSTR LIAS PASSED INTO THIS ROUTINE IN BTO

CALL SCALE(GCX. ETD.ZCD(. ZRFFM,Cl

CALL SCALERSCYD, ICY, IRFM. IRYDELTIM.)
B CYD DISCRETE TIME APPROX OF BCY

CALL SCALE CBCZD, BCZ, IRFMI RHMDELTIM)
C CZD DISCRETE TIME APPROX OF ICZ

hSAV3-NDIM2
NDIM'2.NDIM
CALL MYINTGCPHIT.OTD,BTD,.INIGT,QTFT.DT.IRFT,ICCTICIT,ZRHT)
NDIPI2-MSAV3

C PHIT,QTD,BTD ARE EOUIV. DISCRETE TIME REPRESTATIONS OF TRUTrH MODL
C PATRICE

VRlTECKOUTr,:)'
URITECKOLIT,*)' WAS THE VALUE ENTERED IN RT DURING INPUT A CONTINUIO
IUS TIME OR A DISCRETE TIME VALUE? ENTER A C FOR CONTINUOUS *A
I D- FOR DISCRETE VALUE)'
READ(KIH. 12 )MSG

12 FORMATCAI)
IF (PSG.EQ.'C') THEN
CI.I/DELTIM
CALL SCALE(RTD.RT,IRHT.IRH4T.CI)
ELSE
CALL EQUATECRTDRT. IRH?. IRtT)
END IF

C RTD IS THE DISCRETE TIME APPROX OF RT

CALL IDMTCIRFT.UNI*CI)
C W'~1-GTD - I

END
IDEcC DLOORS

SUBROUTINE DLOGRSCGCX.CV.OCZ BOY BCZ,PHIT.PHICRTD,GTD OTO,
I BTD FM,lM 019,GM RNNA CT.o- OT . t .3.RT.HTUXX.UUU.GCSTR.ArFSS.,'D.
I IRY:IF1.GCi.UXU. UMI. ~UMU3,1JM4.wsUME.IUV)

CTHIS SUBROUTINE FORPATS THE SAMPL ,ED DATA CONTROLLER INTO THE FORISAT
C REQUIRED 3%Y THE PERFORMANCE ANALYSIS ROUTINE
C THE FORMAT Is SPECIFIED Ih THE COMMENT STATEMENTS IN THE CODE. AhD
C IN-MORE DETAIL IN E. LLOYD S MASTERS THESIS.DBI.AFIT.

REAL COMiI(l),COM2(1) NI) C(DMNI)
REAL GcX(NDIM,NDZM),CyNDIM.D~GCNDMNI)

IDCYNDI.NDM).BCZNDIM.NDIlA).PHI, (NDIMi.NDfM).
I PHIC(NDIM,NDIM),RTD(NDIMNDIM),GTD(NDIMNDIM).
lOTDCMDIMMDIM),RTD ( DIfl,NDIM),FM(NDIM,NDIM),
1 DflCNDIN,KDII ), OM(NDIM,hDlfl),GCI(NDIM.NDIM),
I UVl(NDIl),tJI2CNDIM)p
-1 ("4 DIM, NDIN), MMCNDIM, NDIM),CT CNDIM, NDIM),
IOT(MDIM.NDIM), FT(NDIM,NDIM), ST(NDIM,HDIM),
IRT(KDIMNtDIM,TNIN,NDI).XXCD:MDI),
I UUU(NDIN ,NDIM),.GCSTR(NDIM NOIM), RKFSS(NDItiNDZN).
I Uxu(NDIN..ND1IN),UNI (NDIMNNIR).Ur2CNDIM,MDIM).
i UP,3 CDI,MDIM).UM4(N4DINNDIM).UM(NDIM,MDIM)9 PEAL YDCNDlr3)

INTEGER IFLGCZ
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CHARACTERqsozse msciZi ,msG2Z1
9COWWnO /AI/?DIM.NDlt~1.COM1

COMMiON /MAIN2/COK2
C0MlOh/Th0U/KIH, iOUT, KPtJCH
COMMON .MAlh4/HDIM2,MDlfM3

*1 COMMO1N/"AUNS/MSG
COMMON /RNTIMi'RNTIME. DELTIM
COM4M/MAIMG/IC!T, ICBl, ICFA, ICGAD ICCM. ICGTD ICQA.IRFA. IRFNq. IAF,

I IRHT.IROA.IO.L0C.IRHM.NUMDTS
WRITE(KOUT,S:'EMTER THE TOTAL RUN TIME AND TrHE SAMPLE TIME)'
READ(KIN.X )RNTIME,DELTIM

11 FORMAT(AI)
C CALCULATE EQUIVALENT DISCRETE TIME VERSIONS OF, N-N.G-GDI
C ON--Q'(D. AND PHI" THE STATE TRANSITION MATRIX FOR FM

C SINCE WORKSPACE IS AT A PREMIUM , THE TRUTH MAODEL MATRICES
CPMIT.RTD,GTD,GTD,RTD WILL RE USED FOR THEIR CONTROLLER MODEL
C COUNTER PARTS DURING THIS ROUTINE SEFORE THE EQUIVALENT DZSCRETE
C TIME TRUTH MODEL IS COMPUTED. AT THAT TIME THERE IS NO LONGEG ANY
C NEED FOR THOSE CONTROLLER MODEL MATRICE SINCE THE CONTROLLER 1S PUT
C INTO THE PERFOMANSCE ANALYSIS FORMAT.PHIC ICY .. CCZ

NSAU3-ND4M2
ND IM2-NDIM
CALL MYINTG(PHIT.CTD,BTD,RTD,GM,OM,FM,BM,IRFM.ICGNDICBMDICGM)

C RTD IS USED AS DUMMIY WORK SPACE IN CALL TO MYINTG
NDlr.2.NsAv3
CALL IDNTCIRFMGTD..Cee
WRITE(KOJT,Z)'ENTER A C IF THE VALUED ENTERED AMID RM IS A CONTIM
IUOUS TIME VALUE TO FORM THE BASIS OF AN APPROXlMATE DISCRETE TIME
1 RM,EMTER A D OTHERWISE),
READ(KINI . )MSGI
IF CMSQI.EO.'C'3 THEN

C APPROXIMATE R1 D-Rl/SAMPLE TIME
CI * /DELTIM
CALL SCA.EtRTDRMIRHM.IRHM,CL)
ELSE

C THE VALUE IN RfY IS DISCRETE TIMIE ALREADY
* CALL EQUATE(RTD.RV .IRHMIRH19)

END IF
C SET UP-X , S , AND U FOR DDTCON

CALL XSU(GCZ,GCY,PHIC,GCX, DCY, CZ,RKFSS,UM.uW 2,U1'3, UM4.UMS,
I FM,BM,IRF"MiICIm.uxx,6.Wu.xu,PHIT)

C GCZ NOW CONTAINS X. PHIC CONTAINS U.GCY CONTAINS S
C GCXRCZ,tCY,RKFSS WERE DUMMY WORK AREAS IN XSU

CALL DDTCONCPHIT,Wxx.CCX.GC.TD,P4IC.RKFSS.ICV.C.GC.AL.
1 GCSTR.XUWMI,UM2.UN3.WM4mVM5)

CsCY.BCZ GCYPHIC.GCZGCX,RCFSS ARE USED AS DUMM1'Y WORK SPACE I" DDTCON
URiTE(KOIT,*)'DO YOU WISH To COMPUTE THE KALMAO( FILTER GAIN OR PIC
1K IT DIRECTLY (AS IN MAYBECK SECTION. 14.S)EMTEW A C TO COMPUTE E
INTER A P TO PICK IT DIRECTLY>'
READ (KIN.II)RSCZ
IF (MtS4Z.EG.'C')THlEN
CALL DKFTRtPHIT.BTD.GTDOTD.GCX.RTD.WM.CCY.GCZ.P4IC.RKFSS.RCY.ICZ.

CG.Cx,GCY,GCZ.DCZBCY ARE USED AS DUMMY WORK SPACE IN CALL TO DKFTR
ELSE
CALL PKDIRC(CCX.PHIT.GCY,GCZ HM STD.RKFSU.ICBMIRFM.IZRHM)

C GCX,GCy GCZ ARE, DLjf Y UORKSPACjS IN CALL TO PKDIRC
END IF

Crtattz:zztt*INTHE FOLLOWING CALCULATIONS. ICYGCY,3CZ ARE DUMMY UORKSP
Cz*ssz*%IZUACES UNTIL THEIR LAST USE WHEN THEY ARE SET EQUAL TO THEIR F
CttttStZZiAL VALUES FOR PERFAL SUBROUTINE

CALL IDNT(IRFM.ICY.CI)
CALL MATI(RKFSS.NMIRFM.IRHM.IRFM.GCY)

CALL MADDI(IRFM,IRFM,RCY,GCY.ICZ,Cl)
C BCZ aI-RKFSS(HM)

URITE(KOU'T.2)"'
WRITE(KOUT,%)'DO YOU WISH TO CALCULATE THE SAMPLED-DATA FILTER P

IOLES7 Y OR N>'
READ(KIN,12)MSO
IF (msG.EQ.'Y') THEN
CALL MATI(PHIT,vCZ,IRFM,IRFM IRFM PHIC)
WPITE(KOUT,S i'THE EI6ENVALUES THA+ CORRESPOND TO THE SAMPLED-DATA

1 FILTER POLES ARE..
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CALL MEIGNCPIIIC,UVI.UVZ.IRFM.UMI?
END IF

CALL SCALE(RCYDGCSTRXCM.RF',Cl)
C SCY--GCSTR ' ICII! X 1RFM

IF (flSG2.EG.'C') THEN
C FORMULATE THE OOTIMAL CONTROL LAU FOR PERFAL

CALL MATI(BCY,BCZ.ICBI ,IRFM,IRPM,GCX)
C GCX- -GCSTR(I-RKFSS(HM)) ICili X IFRM

CALL MAT1(2CY.RKFSS.XCDM,IRFM.IRHM.GCZ)
C GCZ- -GCSTR(RIFSS) ICBM X IRHMt

IFLGCZ.*
CALL MATI(BTD.Y.IRM,ICI'.IRFM.CCSTR)
C1.1.0
CALL MADDI(IRFM,IRFMPHITGCSTR.DCY.CI)

C RCY- PIIT-STD(GCTR) IRFM X IRFM
URITE(KOUT.Z) '
URITECKOUT.R)'D; YOU UISH TO CALCULATE THE POLES OF THE OPTIMAL

I LO SAMPLED-DATA CONTROLLER? Y OR N>1
READ(KIN 12)MSG
IF CMSG.tQ.'Y'i THEN
URITE(K4OUT Z1-'THE EXCENVALUES THAT CORRESPOND TO THE POLES OF TH

LE OPTIMAL CC CONTROLLER ARE .........
CALL MEIGH(BCY.6%IJ.WVE,IRFMPHIC)
END IF

CALL MATI(ICY,BCZ,IRVM.!RFM.IRFMPH!C)
C PHIC .(PHIT-9TDLGCSTR)tl-RFSS(i9)) IRFM X IRFM

CALL MATI(BCY.RKFSS,IRFM.IRFM,IRHMBCZ)
C BCZ.(PHIT-ITD(GC^STR))RKFSS IRPM X IRHM

ELSE
C FORMULATE THE SUBOPTIMAL CONTROL LAUD UST--GCSTR(X AT TSUI I MIINUS)

CALL EQUATE(GCX,DCY.ICRM.IRFM)
C CCX--GCSTR ICBM X 1RFM

CALL I9ATI (PHITBCZ, IRFM, 1RFM, IRF7 ,GCSTR)

CALL tATI(ITD.GCX,IRFM,IC3MIRFM,3CY)
LRITF(KOUT,2)'
URITE(KOUT.2)'DO YOU WIISH TO CALCULATE THE POLES OF THE OPTIMA

IL LQ SAMPLED DATA CONTROLLER? Y OR N>1
READ(KIN. 12 diSC
IF'UiSG.EO.*') THEN
CALL PADD1(IRP".IRFM.PHIT,tCY,PHIC.CI)

URITECKOUIT,I)T4E EIGENVALUES THAT CORRESPOND TO THE POLES OF THE
1OPTIMAL LO CONTROLLER ARE ... I

CALL MEIGN(PHIC,UUIPUU2. IRFI9,WMI
END IF
CALL MADDICIRFM.IRF',GCSTR,DCY,PHIC,CI)

C PHIC- PHIT(I-RKFSS(Ifl))-BTDGCSTR IRFM X IRFM
CALL MAT1(PHIT.RKFSS,RFM.IRFi.IR4M.3C2)

C BCZ-PHIT(RKFSS) 1RFM X 1R149
DO 101 1-..RFM
DO lSLJ.1.IRHfl

lot GCZ(I J)-e
IFLOWi.
END IF
IRY*I
DO 102 1*II4DIM
DO 102 J.I.IRY
cCYCIJ)w*

le 10 ICYCZ.J~f
DO 107 I,1,1666

167 YDCI).*

MSa.'PHIC FOR THE SAMPLED DATA CONTROLLER 161
CALL MMATIO(PHIC,IRM,IRFMi.10,KIM,KOUTNDIM.NDIMD
URITE(KOUT.Z)'
URITE(KOUT,Z)IDO YOU UAMT TO CALCULATE THE CICENUALUES OF THE LOG
1 CONTROLLER STATE TRANSITION MATRIX, PI1C? V OR M>'
READ(KI4, 12 )MSG
IF (MSG.EC.'V') THENM FTELCCNROLRSAETAST
WRITE(KOUT*9)'THE EIGENVAUESOTILOCORLLRTAETAIT
ION MATRIX ARE..
CALL HEIGN(PH1CWJ.U,I~RPM.UMI)
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END IF
PMSG*DBCZ FOLLOWS, RCYS6'9CALL MMTOIZIF.RM1 IOTKlDE
MSG-lGCX FOR THE SAMPLED DATA CONTROLLER is,
CALL MAT1O(GCX,ICBM.IRFf.IO.ZIN.OUT,HD.NDXM)
IF t(SG2.E9.'C') THEN
MSG*IGC7, FOR A COMPUTED KFSS'
ELSE
IS'GCZ FOR KFSS PICKED DIRECTLY'
END IF
CALL MATOGZIBRM10KMK~tMI.DM
WRITE(KOUT,Z)' CCY IS SET w 9

C THIS IS A REGULATOR SO YiD IS ALWAYS ZERO
NSAV3.NDIM2
HDIMZ *NDIM
CALL MYINTGCPHITOiTD,STD.RTD.GToOT.FT.UT.IRFT,1CCT.ICBT,IRHT)

C RTD IS USED AS DUM9Y WORK SPACE IN CAL TO MIITG
HDJM2*NSAJ3

C PHIT,QTD,BTD ARE EQUIV. DISCRETE TIME REPRESTATIONS OF TRUTH MODL
C IqATRICE

WRITE IKOUT.Z)'
WRIECKOUT,Z)' WAS THE VALUE ENTERED IN RT DURING INPUT A CO~fT1NUO
1US TIME OIL A DISCRETE TIME VALUE? ENTER A C FOR CONTINUOUS,
1 D FOR DISCRETE VALUE>'
READ(KIN "12)MSO

1e FORMATCA1)
IF (MSC.EO.'C') THEN
CiI/DELTIM
CALL SCALECRTD,RT,IRIT.IRHTCS)
ELSE
CALL EQUATECRTD.RTIRHT.IRHT)
END IF

C RrD 1S THE DISCRETE TIM E APPROY OF RT
C1* 1.6
CALL IDNTCIRFT,GTDoCI)

C GD GTD I
RETURN
END

tDZECK FT
SUBROUTINE DKFTRCPHIM,3MD.GMD,OMD,UWI1,RMD.HM.WI3,UMSWM6,RKFSS.
I F2,H2oF",GVn.OM,3M.WMZ,UM4)

C THIS ROUTINE CALCULATE THE STEADY STATE KALMiAN FILTER GAIN P.ATRIX
C FOR A SAMPLED ATA CONTROLLER

REAL PHIM(NDIM,MDIDHDIMNDMXM),MDNDI,Dl),
I GMD(NDIM.NDIr,UMCNDIMHDIM).RDDr.,nDIM4.
I HM(NDIM,MDIM), UM3(MDIM,MDIM5, UMS(NDIMAtDIM..
I UM6(MDIM.NDIM), RKFSSNDI ,NDIM),F2NDIMi.NDIM)
I ,H2(MDIMDIM,FM(DIM,MDIM).
I G1A(DII,NDIM,OM(DII,NDIM),19(NDIMNDIM),
I hrn2cNDIM,NDIgq),u94cNDIf ,ZIM)

REAL COI'I(t),comaCI)
CO PIOH /MAINI"INDIMIIDIMX.COMI
COMMONt elHOU1 K1N.KOUT KPUtNCs
COMM"t .'Rt4TIMx RkTInqE fELTIM
C0MOhMAI4,N"DIM.HNlM
COPWI"Ul4.-MSc
COM~MON *MIM~I2/ COMg

COMMON -MAX N6/1CRT. ICBM. ICFA. ICA. IMICTICOAIRFAIRFIR.T,
I lRHT.IROA.1O.LG.RHM.NUmIDS
CHARACTER MSGltl .PIsO:e6

C DELETE DETERMINISTIC STATES AS IN THE CONTINUOUS TIME CASE
wRZE(eCou7.,'zp YOU PLAN TO USE THE DOYLE AND STEIN TECH4IQUE FORI THIS RLR' YU MAY WISH TO MODIFY THE VALUE OF NUMDTS, THE NLR9IER0

IF DETERMINISTIC STATES. DO YOU WANT TO CHANGE NUt DTS7 I'O )
READ(KIN.II )MSC1 R o
NUMsAU.NUUiDTs
IF (MSOI.Ea.'' THEN
URrTE(KOUT,&)'ENTER THE NEW VALUE OF kUlCTS FOR THIS RUN>'
READ(KIM.a )NUMDTS
END IF
IRITE(KOUT.:3'NUMDTSe '.NUM9DTS
IDS-NU'DTS~l
IRFe. IRFM-HUMDTS* IF(NU19DTS.EO.,) THEM
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C STORE SYSTEM MODEL IN INTERMEDIATE MATRICES comPAibDLE
C WITH THOSE BELOW WHEN THER ARE DETERMINISTIC STATES REMOVUEDCALL EQUATE(F2,PHIM.IRP2,IQFZ)

CALL EGUATEUN1DGD.IRF2.IRF2)
CALLkEQUATE(H219, IRsM. IRF2 I
CALL EOUATE(VMS,1MD. IRF2. ICBM)
CALL EQUATECUPI2.OMD. 1RF2. IRF2)
ELSE

C DELETE THE DETERMINISTIC STATES FORM THE MODEL USED TO FORM~
C THE STEADY STATE KALMA4 FILTER GAIN MATRIX

DO 2112 I*IDS.IRFM
1I-I-tiUMDTS
DO 2112 .r*DSIRFM
JJ-J-NU DTS

2112 UMi4(II.JJ).FMq(I,J)
DO 2113 I"1.IRW4
DO 2113 J*IDS.IRFM
JJ*J-NIJMDTS

C FOR" 12D G2D NOU
DO a1l5 I-IDS.IRFM
II .1=tIUIDTS-
DO a1ils Jol.ICDM

9116 UM3'11.J):BM(I J)
Do 2114 1I..DSRFM
II-NJMDTS
Do 2114 Jol.ICGM

2114 Vft 1I.J)-GM(IC.J)
11 - FORMAT(Al)

NSAU*NDIMB
NDIfi24NDI'
CALL YINTGCF2.UM2,UMS.WMS,UM.QM.UJM4.UM3.IRF2,ICGM,ICM.ICM)
NDIfl2.NSAV
cl-I.,
CALL IDNT(IRF2,UMI,Cl)
END IF

C CALCULATE GMD (CMD) GFW?9 CALL HAT3(IRF2.ZRF2.MlUM.RCFSS)
CRKFSS IS DUMMY WORK SPACE AT THIS POINT IN THE PROGRAM

-URITE(KOUT,:)' DO YOU U1514 TO MODIFY THE 0911 MATRIX BY THE DOYLE
.AND STEIN TECHNIGUE FOR CONTINUOUS TIME CONTRCLLERS EXTENDED TO
ITHE DISCRETE TIME SYSTMS, Y OR N)'
READ(KI)1.11 )MSCI
IF (ISGI.EG.'Y') THEN
CALL DAS2(lM,RKFSS.UM1,ICBM.Ur3.IRF2.UM6)

C RETURNS A M~ODIFIED ORD VALUE To BE USED IN FINDING RKFSS
END IF

C CALCULATE THE KALMAN FILTER GAINS, RKFSS# FOR-EITHER THE MODIFIED
C ORD OR THE UNMODIFIED ORD
C ORD IS STORED IN RKFSS

CALL TRAfIS2 IRH1M, RF2j'2*UM3)
CALL KFLTR(IRF2,IRHMF2U3,RFSS.RD,rnUrI,UMS)

C 64 msPISS,UWqS CLOSED LOOP MEAS MATRIX
C UMI a RIZFSS UITHOUT THE ZEROS FOR THE DETERMINISTIC STATES
C NiOU ADD THE ZEROS FOR THOSE STATES

IF CNUMDTS.EQ.0)TH1E
DO 2929 1-1 IRFM

mg9 RKFSS(I.J'UUM1(1,J)
ELSE
DO0 2119 J.1,IR1'
DO 21121I NUMDTS

2110 :KFSS(I,4)'*
DO 2119 I*IDS.ZRFM
I1.I-NUMDTS

2119 RKFSSI.JI'hlMlCII.J)
END IF

C NOU WRITE OUT THE RKFSS MATRIX
elf 10-5

PSG-'STEADY STATE SAMPLED DATA KALM44 FILTER GATN MTRIX,
CALL MATIO(RKFSS.IRFM,IRM.IOKIN.KOUT,NDIM,M,M
hMPDTSmNUI SAV
RETURN
END

tDECZ DAS2
SUBROUTINE DAS2(IM,0MD,UIClM.U?,3.1IRN,W'i)
REAL IM(NDIM.NDIM.QGMD(NDIM.NDIM). IJCNZIM.NDIM).
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* C THIS ROUTINE ALLOWS GIC TO BE MCDIFIED IN A MANKER SNMILAR TO THE D3
C YLE AMC STEIN TECHNIOUE FOR CONTINUOUS TIM SYSTErS.'
C G"DM~OL,.QND +SQzSO)(?CU()RMT)*SAPLE TIME
C W- ERE SO iS A SCALAR DESIGN PARPIETER AMD V IS A POSITIVE DEF:NITE
C SYMETRICM.ATRIX DESIGN PARAMETER. AS SO --- >TO INFINITY IN THE CO
C KTINU0US TIM'E CASE, ROBUSTNrSS PROPERTIES Or A FULL STATE FEEDBACK
C CONTPOLLER ARE RECOVERED. iHIS ROUTINE IS 'BASED ON E. LLOYDS MASTERS
C THESIS .DEI, AFIT

CHARACTER FMSG16e
REAL COP 1(1,COP2(l)
COMMOQN /PAI/NDIM.NDIMI.COS1
COMMON /RTI.'RTIE..DELTIM
COMMON /KAUNS/P9SC
COMMON /MAIK2/ Cora
COO,"ON /IKOU/ZIN.KO!T.KPIJNCH

11 FORMAT(AI)
WRITE(trOUTZ)'THIS ROUTINE MODIFIES THE VALUE OF O1C USED TO CcALCU
ILATE TH4E STEADY STATE KALMtAN FILTER GAIN. THE MODIFICATION PERFOR
IMED IS SIMILAR TO THE DOYLE AND STEIN TEC$4NIQUE FOR CONTIftUOUS-TIM
IE SYMM~fS. FOR A COM9PLETE DESCRIPTION SEE E. LLOYDS MASTERS THES:
is. AF LT, vSI. tR:EFLV THE MODIFICATION ATTEMPTS TO ENHANCE ROVLS?
hiESS OF THE LOG CONTROLLER AND IS OMDGLQDCDTStQDL'r
I ZcBN(U)tfMT))... THE LARGER THE VALUE CHOSEN FOR THE SCALAR SO Ti.
IE MORE ROBUSTNESS RECOVERY (CO MPARED TO FULLSTATE FEED-1ACK), V K
LUST BE A POSITIVE DEF. MATRIX, CHOOSING V-1 ADDS PSEUDONOISE EQJA
ILLY TO ALL CONTROL INPUTS.,
WRITE(KOUT,11)'
WRITE(KOUT,%z'ENTER 1-- TO INPUT SO, a-- TO INPUT V, 3-- TO

1 COMFUTE MODIFIED 0, 4-- TO EXIT ROUTINE ....... NOTE I A2 MUST BE
1 ACCOMPLISHED BEFORE 3, AND 3 BEFORE 4o BUT THAT J,2,3, CAN BE
I DOME ANY NUMBIER OF TIMES BEFORE USING 4'

S URITECKOUT.11)' I
URITE(KOUT,Z )'ENTER OPTION>
READ(KIfiz)IOPT
GO TO ( 1.2.3.4)IOPT

I RITE(KOUT.11)'
VR1TE(KOJT, U 'ENTER SO>'9 READ(KIM.z)SQ
QLO TO S

2 WRITEt(OUT,.:1
tRITE(KOUT,z'1V IS INITIALIZED TO THE IDENTITY MATRIX UPON ENTRY 7
10 THIS OPTION. IF YOU DESIRE TO CHANGE V .PENrErVER IT MUST BE
1 POSITIVE DEFINITE..ENTER THE 1/0 OPTION (I/O OPTIONS ARE
I PRINTED AT THE BEGINNING OF THE PROGRAM) ELSE ENTER A 0 >'
CL-I.e
CALL IDMT(ICB .U,CI)
READCKIN,s )IO
IF LIO.EQ.0) THEN
GO TO S
ELSE
MSG-'THE CHOSEN V MATRIX IS,
CALL MMATIO(VICB,ICBM.1Q,IKzOUTNiDIM.MDIN)
END IF
to TO S

3 URITE(KOUT.11)'
CALL MAT4(V.BM.ICBM.ICIM.ZRFM.UM3)
CALL MATI Cl!.UM3,IRFN.IC .IRFM.UMIl
CI.SO3SOTDELTIM
CALL MADD1(IRFM.IRVM,0MD.UNIWt3,CI)

PISG.'NqODZFIED 0 MATRIX. OMOD-'
CALL PtNATIO(WM3. IRFN. RFM, ZO,KIN,KO'T,NDIN.NDIMN
Go TO S

4 CALL EQUATECOI D.uN3.XRFM.IRFN)
C REPLACE THE VALUE IN OMD WI1TH OMOD

RETURN
END

9DEOK GDTCON
SUBROJTINE DDTCON(PHIMWXXUN1.x,BMD,U.UI2.PHIPRN.,

I xpRIM,S.L;UU,GCSTR)
REAL COMI(1 ),COM2(I). PHIPI(NDIM,DIM),
IWXX CNDIMNDIfl),M1(NDIMNDIM).X(DI,NIl),
I 3ND(NDIPI,NDIM )' U tDIM.NDIM).UM92(hDIM.NDIM).

* I PHIPRM(NDIM,NiDIMI)XPRIM(NDINNDtIM).SCNDIM.NDIN).

OF I WUUtNDIM.hD:!.),GCSTR(NDIMNCIM)
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CHARACTER MSG160
COMMON i'MAIN"ItMDIM,HDIMICOl1
COPL40N i/qAIN2/ COM2
COMMON ',MAIh4/HDIMBapiDIM3
COPM~OMi -IM~cu/KIN,cOfT, KPUNCH
COMO N tRNTII ' RNTIIEDELTIM

COL0,IMI6 B.IB.CAICOAD 10GM ICOT. icQA.iRFA, XRI'!*RFT,

CTHIr SUBROUTINE COMPUTES THE STESDY STATE OPTIMAL FEEDBACK GAIN MATRI
CXGCSTR, BASED ON A LINEAR QUADRATIC COST CRITERION, FOR A SAMPLED

0DATA CONTROLLER
CSEE MAYBECK CHAP 14 FOR A DETAILED DISCUSSION OF ALGORITHM AND
CEQUATIONS

MT-i
C
C TRANSFORM SYSTEM SO KLEINMAN RICCATI SOLUER WILL HANDLE S NOT-0

W CALL PRIIT(WM2.UIC1.GCSTRSIRFM.MDI,WMI.PHIPRM.X.XPRIM,
I PHIM)

C
C hma.UIlST
chow COMPUTE xPRIm FROM RICCATI EQUATION

CALL lAT3IRFM ZClM.IIID.GCSTR IJMI)
CALL DRICCIRFM.PHIPRM WMIl XPRIM X.CoSTR)

C CCSTR CONTAINS INFO THAT Is h6T USE6
C X CONTAINS 9*KPRrMZS ZRF'M X IRF?
C NOW COMPUTE GCSTRPR Ii

CALL MAT3( ICBM, IRFMBMD.X,GCSTR)
CALL mADDICICBMICBM,.UG.STR,U I.C1)
CALL GMiNUCICDri,ICBMUML,GCSTRMR.MT)
IF (MR.NE.ICBM) THEN
PRINT X.'INUERSE OF U IN DDTCON NOT OF FULL RANK. RANK IS *

I MR.' RANK SHOULD BE *ICBMO',ICIfl
END IF
CALL JAT4CCSTR,BMD,ICBM,ICBM,IRFM.UMI)
CALL MATICUMI.XICBMIRFM.IRVM.GCSTR)

CALL MATICGCSTR.PHIPRM,IC3M,IRFM.IRFM.UMI)

C ICBM X IRFM
CALL IiADDI(ICDM. IRFMU.9MIl2,GCSTR.CI)

C GCS1'R ICBM~ X iceff
10 OS
MSG-'THE OPTIMAL STEADY STATE FEEDBACK GAIN MATRIX.CCSTR'
CALL MATIO(GCSTRICM,IRIO,1KI.KOT.DI.DI')
RETURN
END

2DECK PKDIRC
SUBROUTINE PKICUPIUIUP.M.MKS.CMIF.RP
REAL CoMIE1).CO~l2t1).U(N)IP.,NDr ),

I PHIM (NDIr.NDIM), WIMI(NDIM.NDIM). UM2(HDIT.,NLIM),
I HMC(NDIF .NDIM), PMXCNDIM,NDIM), RSSNDI .NDIM)
CHARACTER M50168 .MSQLI
COMMON /MAINI/NDIM.NDIM 1.CORI
COMMON /MAINE/COR2
COMM ,MIMUSt MSG
COMMON /IhOU.' KIN, KOUTKPUNCH

C AS IN MAYBECK, SECTION 14.i! RKFSSPiM(BMD)U tzSO. SO IS A
C SCALAR DESIGN PARAMETER AND W 1S ANY NONSINGULAR M X A MATRIX.
C 1iAYBECK SUaGESTS THAT U.(HM(PIMI)VMD)I IS A POSSIBLE CHOICE.
C TE RlKFSS PICKED AS A RESULT OF THIS ALGORITHM FORMS THE RASIS
C OF A SUBOPTIMAL COHTRL LAU.USTARmGCSTR(X(TI-MI2JS)

LRITE(KOUT,12) '
WRITECKOUT 2)'THIS ROUTINE CALCULATE$ THE STEADY STATE K~ALMAN F!LT
ICR GAIN DIRCCTLY( THAT IS WITH OUT USE PMSS FROM THE MATRIX RICCAT
:1 EQUATION AS THE BASIS OF KFSS)I EOVATION AS IN GCCTION 14.S rAY
IDECK. KFSS.SOz(PHIMI3MiD(U) WIHERE THE SCALAR SO AND THE MAR:
I Wi ARE DESIGN PARAMETERS... .THE LARGER THE SO THE MORE ROIJSTIESS
I THE SUBSEQUENT CONTROLLER WILL HAVE. NOTE THERE ARE NO STAEILrT
1%' CLAIMS FOR THE RESULTING CONTROLLER, SO SE SURE TO CHECK TliE El
IGENVALUES Or TNE SUBSEQUENT CONTROLLER.'
WIJRTE(KOUT12)'

12 FORMATCAI/)
URITE(KOUTZ)'THE OPTIONS FOR THIS ROUTINE ARE 1-)CHOOSE SO. !-) C

*IHOOSE U, 3-. COMPUTE AND PRINT RKFSS, 4-> EXIT ROUTINE .........
WIJRTE(KOUT,12)'
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WRITEcKOUTr,gvENTE4 OPTION)*
READ(KIM,111OPT
Go TO (1.2.3,4)IOPT
00 TO 4

URITEtICOUTS)'Et(TER A VALUE FOR SO, LARGER SO GIVE BETTER ROBIJSTHE
ISS)'
READ(KIH.I )SO
GO TO 5

a MITE(KOUT.12)'
URITE(KOUTZ)bDO YOU WANT TO PICK U ARSTRARILY OR DO YOU WANT W TO

I BE WPHIMI)B D -INVERSE AS Ih IjAYBECK SECTION 14.5. NOTE TM-T
I IRHMl MUST BE EQUAL TO ICBM SINCE u MiUST BE ICin X LCM. ENTER
IAN4 A FOR ARBITRARY, U OTHERWISE)'
REAOCKIN.,II )MSG1

It FORMiACAI)
II IF(NtSCI.EQ. 'A' )THEN

URITE KOUT.2)'EtNTER 1I'0 OPTION FOR U(SEE INPUT ROUTINE FOR EXPI.ANA
ITIOe4 OF INPUT OPTIONS x,Z.3,4.S,6w)

READ(KIM.S UO
MSG.'ARSITRARY W MATRIX'
CALL W"ATIOCU. ICBN,1CBN.1.I.KOUT.NDIM,HDIR)
ELSE -

C C0O4PUTE U As DEtCRISED AO4JE
IF (ICOM.NE.JRHMf) TH4ENICMTUS
WPITEcKOUT.9)'NOTE TW4AT IRHMi MUST EQUAL HONT UETIS MiETHOD OF
I CALCULATING W, ICPM@*.ICBN.' IRH~w 'IN

GO TO 6
END IF
CALL EOUATE(WI.PI IRFri,IRFM)

C GM'INV DESTROYS THE CALLING ARRAY

CALL GMIMUCIRF.IRFN,WM,Ui.RRT)
CALL IIAT(4,UM2,RN,IRvN,IR FNAJM1)
CALL NAT1(UFU,BiDIRMflIRFN,ICBRUMi2)
CALL GMINV( XRHMP. lp,,2,W,RR,MT)
END IF
0O TO s

3 WRITE(KOUT,12)'
C CALCULATE RKFSS

CALL EQUATE(Ufr1,PHZN,IRFM.IRFMR)
C "P.INV J ,STROYS CALLING ARRAY

"T.1
CALL GMIMU(ZRFM. IRFMN,UMN,IIRM)
CALL NATl(UM2.BND.IRFIIRFNICBN.UM1)
CALL MATI(UMI W,I0Fr,1CVti.IClM.uM2)
CALL SCALE(RtZFSS,URB,IRFM,IRH4N.SO)
10-S
MSG%'RKFSS, PICKED DIRECTLY IS'
CALL ,PATIO(RKFSSIRFN.IRHR.IO,KlNKOUT,MDIR.NDrM)
GO TO S

4 RETURN4
END

tDECK PRIKIr
SUBROUTINE PRIMI~TUR2,U,ICBN.GCSTR,SIR7,IMD.UNI.PRIPK,XsXPIM.
IPIMI)

C THIS SUBROUTINE COMiPUTES THE PRIMiED QUANTITIES NEEDED WHEN USING
C KICINIAN RICCArl SOLVER WITH HOM ZERO CROSS COST UEIGH4TIMG
C MATRIX UXU

REAL WM(N IM, MD IM), OCSTR DT ,NDIM, SN001%, NDIM1,

I XCNDIRN(DI.),RINDflDIRD),PIM~NDI'~.DIN)
REAL COf 1u).Co'ieI)
COMM~ON dRMAImil 9DIMIiDDIMICONI
CORPMON /"mAIN2/COme
COMMON INOU/'KINKOUT,KPUNCH

C NOU COMPUTE XPRIM, PHIPRM
* CALL EOUATE(UN2.U,ICflpIClM)

C GI9INU DESTRIYS THE CALLING ARRAY

CALL CNINV( ICSN. ICBKbUNE.GCSTRDNR.WT)
C GCSTR* Ul ICBMi X ICBM

CALL MAT4CGCSTR,S.ICBIIICBM.IRFM.IJPZ)
CUNI* UI(ST) ICBM X IRFM

* ~CALL FIAT1(BMiD,UMZ,IRF'iIC"t,IRFR.W 1)01.-1.e
CALL RADDI(IRF,IRFMPHII9,UJI,PHIPRR,Cl)
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C P'4IPRM. PNzn-3ImD(UIJSTr IRF! X) XZR~
CALL MATl1S,Ul2,IRF.IC3 ,IRFM.Ulj3
CALL MADDI(IRFM.IRFM.K.UII.XPRIMCl)

C XPRIM. X-SCUI 39? IRFM X IRFM
RETURN
END

*DECK RGS
sumourmtih RGS(GCSR.RKFSS,GCX.CY,GZ.CYBCZFCYD

I UAA.UB MU .DUMT.T,4T, OT,RT,
t MBI.GI,HM,Q!,RM,X,POUX(.UUUUXU,FA,AGAGAGUA.

IMXA.PXARA,PXVAGCZA. IRY. IFLCZ. IFLQSD.
IHUJ.PUP3AX.PUMIN.PXThA)X.PXTRIH. NUfAXNUflIN,fqXAqAXMXcAnIN,

REAL COtiI(13.CO!.(1)
C
C THIS SUBROUTINE SETS UP A CONTINUOUS, DISCRETIZED CONTINUOUS OR Aa C SAMPLED DATA LOG CONTROLLER BASED 014 USERS REQUEST.* EACH
C CONTROLLER I S PUT INTO THE PROPER FORMAT FOR THE PERFORMANCE
C ANALYSIS SUBROUTINE, PERFAL. _-

CHARACTER MSCISS
REAL FT (DIN,tIDIi)ITNDM.NDI).GTCDIMPNDIM).
I HT (NZJMND1153&,RM (NDIM NDIM),FMCNDIM.NDZI.
13fl(NDZ'r4Dzlf', (NDIM,NDIMJXOcNDIMJ,
IWM(NDIN,MDIM).OM (HDIFI.NDIM).POtNDIM.NDIPI3,
I0T(NDIM NDIM).RT (DMN~
IGCSTR(Nb6ri,MDIP,3 RKFSS(ND!INI)
IUUI(hDIM).UY2(hDiN 3,hxUcNDZMHDIVU
1UMI (NDZt ,NDXN).IJMZ (NDIM,NDIM3.UA3CNDIMNDIM),
.U04 (NDIM.NDIM),UMS (NDrM.NDIMi),UMiCHDIMINDIN3,
IJM? CNDINNDIM.Wuf (NDIMNDXM).UMD("DIm.NDIN),

IMO(NDZMHDXI ),IMA(NDIME.HDIMS.),UMBCNDIM,DIMi2),
IUAC(MDIM2,NDIi2) )UMNDHINeNDIME 3UME(NDIM2,NiDIM2)
I(NFCDIM2,DN2)uUU(NDIMNDIM).UXX(NDIM.NiDIM),-
1FA(HMDIPI2,NDIPIB 3A(NDIN2,NDIM2) .GA(NDIfl2,NDIN2).
IMXACNDIM2).GCX(NDI.DI9),GCZ(I4DIMi,NDIM 3,
IOA(NDI'I8.NDIfla ,PXANDI32.NDIM2 ),PXVA(NDIM2,NfDIM2).
IMUOUT(NDI) p MXTOUT (ND1N). PTOUT( D IM)

REAL PUOUT(NDIM),YD(NDIt3) GUA(NDlI2t4Mr12),
ZMXANIMNDIM),MXANAX(NDIM ),1UMIN(NDIH 3,
1HUWAX(NDIM ),PXTMIN(NDIR 3,PKThAX(?4DIM 3,
1pqV IN(NDIM 3,PUMAX(NDIR ),GCZA( NDIM2,NDIMZ 3,
IRA(NDIMZ.NDIM2),BCV (KDIM,hDl),CZ(HDIM,{DlM),
IUU3CKDIM2 ) UV4(NDII'W).
IGCV (mDIM.NDIM).FC: (NDlM,NDIM)
INTEGER IFLGCZ. IRY
REAL MU(NDIiM)
COMMON /RNTIMN/ RNTIME,DELTIM
COMMON -IiAIH2.'COM2
COMMON /mAINI/'NDiMNDI9I.COMI
COMMON / INOU/ KIHKOUT.KPUNCH
COMMON -/MAIN4/NDIMpt,HDIB3
COMMON /MAUWs/ MSG0
COMMON 'MAINE', ICgT, ICBM, ICrA.tCOA. ICOM ICOT. ICOA. IRFA. IRFM. IRFT.

i IRHT.IRQAoIOLGIRH9.4JDTS
C

WRITE( COUT. ZVENTER A C FOR CONTINUOUS TIME LOG CONTROLLER AND A
I D FOR A SAMPLED DATA LOG CONTROLLER>'
READ(KIN 12 ,Ds2Ve33 3*99
IF (MSQ.JQ.'C3) THENj
IFLGSD-S
CALL CLOG SCGCS R.F?9,B19.RKFSS.HM,GCX.GC%',GCZ.BCY.BCZ.VC.YD,

I R*,QM,FTBTDGT.QT.RT,HT,
lIRY. ZFLGCZ.UMl'WI2,Ij3
1 P0 GM UM4,UfiS,UMi.UI,UU8,UUU.UWX.O.UXUUM7,UM2)
0~ CIO.J0.SITHEN
G0 TO 2933
END IF
CALL FR"AUC(OT RTFT. T, CCZ, HT,6CX.3CZ, FC.GCY,BCY.GTXO,pO,FA, BA,
I GA,QA,GUA,UNIWMZ UMA WMB.UMC u*9D WME,U'i.
I l'XA,PXA,RA,PXUAGCZA~iRY, IFLCZIPLGC)
WRrTE(KOUT,t)'
WRITE(KOUT,t)'DO YOU WISH4 TO CALCULATE THlE EIGEMVALUES OF TIE CLOS
IED-LOOP F MATRIXC? Y OR N>'
READ(ICIN,I2)1 SO
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IF (MSG.EG.'YV) THEN
NSAVI NDIM

NDII-INDIM2*1
U;ITE(KOUT,Z)'THE EIGEHUALUES OF THE CLOSED-LOOP F MATRIX ARE...'
CALL MEI~t4(FA,UU3.UIJ4.IRFAUMA)
HDIN*NSAJI
NDI-*DII
END IF
CAtLL MYINTGCUMAUM,U C,WJIE,A.QA.FA2A.IRFA'.ICGA.IRYIROA)
ELSE

C SOME SAhMPLED DATA CONKTRCLLER IS WANTED
IFLGSD. I

URIE(KOUT.t)'DO YOU WI!SH TO MERELY DISCRETIZE THE CONTINUOUS TIME
I CONTROLLER. Y OR N>'
READ(K1N.12,EKD*2933 )MSG
IF (1"St.EQ.'Y' )THEht

a WURITE(K0UT,%)'z:Z*zZHOTE THAT WHEN ENTERING THE TIME INCREMENT
I IN THE CONTINUOUS TIME CONTROLLER ETl UP, REMEMBER IT WILL BECO

191E THE SAMPLE TIME FOR THE DISCRETIZED COKTROLLCRXZZ*XzzZZ'
CALL CLOGRS(0CSTR.FM.1M.RKFSS,HM GCX.GCY.GCZ.ICV.3CZ.FC,YD,
1 RM.QM,FT.T,GT.T.RTK.IRY,lFLCCZUMI.WM.UM3PO.GM
F-01 U W4.vMUMS IUV1 UV21 UUUXluX, XU, liv7t VMS)
IF (IO.EO.O)1HEN
00 TO 2933
END IF
CALL DSCRTZ(UMl,V 2,WPM3 WM4 1 FM DELTI'9,FC ICY. 1EV l? IRHM.

I W5,UM,GCSTR.7.DGT,T I FjC~ I iI ;T RKF SR+.CX,
I ICBM)ITR 

,CI .P:

VR ITE(K OUT ,* '
URITE(KOUTX)'DO YOU WANT TO CALCULATE'THE EIGENUALuES OF THE STAY

tE TRANSITION MATRIX FOR THE DISCRETIZED CONTROLLER? Y OR tOl
READ (KIM. 12 ISG
IF (MSG.EO.'Y') THEN
URITE(KOUT.X)'THE EIGENUALUES OF THE STATE TRANSITION 14ATRIX FOR 7

IKE DISCRETIZED CONTROLLER ARE..'
CALL mEJ6N(UM,UU1,UV2.IRIM,BCY)
END IF

C RKFSS, IN PRECEDING CALL STATEMENT ARE MERELY DUMMY WORK SPACES
C GCSTR CONTAINS ICZD UPON RETURN FROM VSCRTZ

I POFA,BA,GAOA,GUA,3CY,FC,UMA.L"R.WMCIuD.uMEUWMF,APXARA,
I PXUA,GCZA, 1V, IFLCCZ. IFLCSD)
ELSE
IFLGCZ*S
CALL DLOGRS(GCXGCV .GCZ, ICY. 0Z,.M3,FC,UM2 ,WIMS,WMI ,AFfl.RM.

CALL FRMAUG(UMI .UM2UM3.UM4.GCZ.HT.GCX,lCZ.FC.GCY.ICV,Umsxo#
1 POFA.3A,GA.QA.GUA,RKFSS,GCSTR,WMA,LMB.UMCMD,UME,WMFMXA,PXA,
1 RA.P"XVA.GC.ZA.IRV.IFLGCZ.IFLCSD)

C RICFSSGCSTR ARE DUMMY UORK SPACE IN CALL TO FRMAUJC
END IF
NSAVI *NDIM
KSAJ2ahDIMl
NDIMIoNDIM2*1
NDIM.NDIM2
CALL EQUATE(UMAFA.IRFA. IRFA)
CALL EoUATE(UMC , A,IRFA.IRV)
CALL fAT1(GA,QA,.IRFA.IROAk,rRO,IE
CALL 9AT4(UME.OA.IRFA.1ROA.IRFA.WMI)
KDII'IWSAUI
hDtII NSAU2

C NOTE FC AND BCV In CALL TO FRMAUG ARE DUMMY WORKSPACES
END IF
RETURN

it JRMAT(AI1
END

zDECK XSU
SUIROUTINE XSU(X S UPHIJOIJO Pt4 ?I.INTPZ.P IT)B

I TEMP TrMPI.TEMOh 3M.IR,3M,'AKWDhII Pt4!T)T-~-fFR S I H

c THIS RQUITINE COPUT S ) S N TTM -UIiFRUEZ H
C SAMPFLED DATA CONTROLLERDETERMINISTIC GAIN 

CALCULATIONI

C HI OUTINE APPROXIMATES THE INTEGRALSREGUIRED (SEE 
MAVIECK.

C ETHI N ;) BY3 TREATING TIME VAYIM6 ENTITIES IN4 THE
C INTECENDS AS.2 COSANTS OER SOME SUSIIITERVAL OF THE SAMPLE TIME
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C THAT IS CHOSEN BY 'THE USER -

REAL X (MDIMHDIM), S(KDI ,Nb01fl, UCNDIIN.DIM)

SPIJNI NDIMI),PHJ(NINDIM ,PIZ I(DMDIM,

ITCPP CHD1,DIM).TEMPIP(NDIM,NDZM.TENP2Ct4D!N,NDIN),
IFMCNDIMMBXN),B (KDI1M,ND!)UXX(MDMDIP.),
lUUU CNiDII,DI.UXU(ND1,If),PHINCD1PM.HDIF)
REAL COMIi1.COM'2(1)
CHARACTER '15C269

COMMrONi /MAIhI'NDI,hDIrnCOrtx
COMOH/tAIN21CO!W
COMMON IlNOUI KIN.KOUIT.PUMCH

C09!tON 'qNT!Ml RNTIMtE.DELTIM
COfqnoti /MAUMS/ M~SG
IZIT-8
DO 792 IJK*I.1009

C GIVE USER UP TO 1009 CHANCES TO CHOOSE DIFFERENT SUBIIrERVAL LENGTH

* IF CIZIT.EO.1)THEM
URITE(KOUT.12)''I
URITECKOUT.300 YOU WISH TO RECOMtPUTE X.S.U. BASED Oil A DIFFERENT
I. SUSINTERVAL LENGTH. Y OR M)'

READKIN.1± )PSG
it FORMA~T(At
12 FORMATA./'3

IF (MS0.EQ 'N' )THEN
RETURN
END IF
END IF

WRITE (KOUT %)'ENtER THE NUMBDER OF SUBINTEPVALS TO USE IN THE A:vF^
IXIIIATIONS OF INTEGRALS NEEDED rO CALCULATE X, S, ANr U tSUGQEST
I OR MtORE 1),

READ(KIH %)IMTVAL
C NOW INITIALIZE VARIABLES REQUIRED IN CALCULATIONS!

CALL IDNT(IRFMi.PHIJO,CI)

CALL IDNT(IRFfI.X,Ct)
CALL IDHTCOM.U,Cl)

DO 13 ZI.IIRFM
.DO 13 J.IIC3Bt
fJ01i,J)-e

13 SrIJ)%B
C INITIALIZATION COM'PLETE, N4OW CO'iPUTE PHIJ, ImTPPIJ rQR SUSIKTERIJAL
C PHIINTPHI ARE APPROXIMATED BY IAKIN3 AVERAGE OF VALUVS AT TIE
C BEGINNING .END AND 2 POINTS IN THE MIDDLE OF EACH SUEINiERvAL
C THIS MEANS 9 SUR SUB INTERVAL POINTS TO BE CALCULATED. HOWEVER, 0

* C NLY I CALL TO INTEGRATE ROUTIMIS REQUIRED SINCE FMt IS A CONSTANT
C M3ATRIX

DEL-Se
SUBINT.DELTIMi'( 4tINTVAt 3
DO 23 jK*I.IKTVAL

C COMiPUTE PHIJ BJ AND THEN UPDATE PHIJO,RJO
C FOR EACH SUB INTERVAL

ci-i.e
DO 371 INTUL-1,4
DEL-DEL+SuplNT
CALL DSCRT(IRFPI.FM.DEL.P,4II,IHTPI1,;)
CALL MADD:(IRFM.IRFP,PHIJO,PN1I,TEM,PC1 3
CALL EOUATE(PHIJO,TE9P.IRFM,IRFM)

C PHIJO'piH1JO+PHII
CALL MTI(INTPI1,3N.IRFMIR.ICBATEM-1)
CALL MAD(RMIe~joTmlTMl
CALL EGUATE(EJO,'r.P,IRVN, tCeMJ

C BJO SJO+IMTPIIZBM
371 CONTINUE
C NOW CALCULATE RJ PHZJ

cl-e.a
CALL SCALE(PHIJPHIJO, IRFM. IRFM.C.
CALL SCALE(BJ,lJO.IRFS,ICBN,CI)

C 9j, PHJ NOU AVAILABLE FOR THIS SUkINTERVAL
C RESET PHIJOLJO

CALL EQUATEtFHIJO PHII IRFM,IRFR)
CALL EQUATECBJO,bPI1RiPP ICPM)

C NOW UPDATE X S U POR THIS SUBiNTERVAL( C K.SUM OF (PHZJtxt.XICPHJ(ELTIPedNTVALfl FOR ALL .JK
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C S:SuM OF (PHIJTXZUXxZ3J+P JTZX)U)2 DETUI/t4iWL )

CALL MAT4A(PHIlJ,UXXRMIRFM,IRF,E"P
C TEMP; PHIJT 2 UX)C

CALL MAITMPB 
3MRMI3MTn2

CIA pELTII'/IMTVAL
CALL MDIIFRr.,r'P.EPCA
CALL EOUAT X,1EfIP. IRFi. IRFM)

C x is ttQU UPDATED FOR THIS SUB-SUJS 
XtTERVAL

CAL" MAT4A(PHIJ,UXU,IRFMlRFM, 
ICDlMTEPIP)

Cil*t.6

CALL hAD(RMIB.EF2TrITr.l
CALL MAD(RMIO.~~PTMiCA
CALL EQAESTPIIFCn

C S UPWAE FOR THIS SUB-SUB 
IIITERUAL t4OU co1PLETE

UCUI OF((3JTIUEL~jA*IHUXA) 
FOR ALL JK

CALL MAT3AC IC0,~IRFH.BJ.WXX.TEMP)
CALL $DIIM.B.-",UTEP.)
CALL M~AT4A(iJ.UXJ,1CBM,IRFM,ICS.TEP
CALL MADD ( ICRM. I^BM.TE39PI T . T~nPa.CiI

CALL MA4(XBIBIFICA 
EP

CALL
CALL EOUATECU.T rP.ICAl. ICBI")

C U UPVATR FOR THIS SUI-SUS 
IMTERVAL, t"U COM~PLETE

23 CC4T!IMUE

FMS-)((TI) IS'

CALL I~ o(mIRF. IF10 IM. OUTMDI NO

ySG0.UlTI) is OT Ol.t( (,DA)

CALL jpATIO(Sg IRFM, CIIm. 
o.KIHU~

1

780 CONTIHUE
RE.TUI

E14D
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Appendix C

Software Considerations

The program, LQGRP, is designed to run interactively

at a remote terminal for the CYBER computer system at the AFIT.

The program memory requirements far exceed the 65000 octal word

list for using a remote terminal so a special loading technique,

segmentation, is used. The segmentation loader actively

manages the subroutines so that only those required for a

particular program phase are loaded into the CYBER central

memory. The remainder of the subroutines reside on a disk

file.

One reason this program requires a large amount of

memory space is merely that state-space system models require

many matrices and vectors to describe them. Another reason

is that the-library of subroutines for basic matrix manipulation

such as multiplication, addition and inversion, as well as

those used for more complex operations such as integration

and solving the matrix Riccati equation require all matrix

arguments to be square and to have the same declared size

(Refs 4 and 5). Because of this, a large amount of memory

space is required even though it might otherwise be unnecessary

considering that the number of inputs and outputs in many

physical systems is generally less than the number of states.

For example, in the model used in this thesis there is one

input and one output and five states. However, in order to

use Kleinman's routines all matrices (Ft' B' tG' .. ) must

be declared square and at least of dimension 5. Thus, just

for B t and H t 20 memory locations are never used.
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In addition to the fact that Kleinma's routines re-

quire unnecessary storage space, some of the specialized sof:-

ware routines or solving the matrix Riccati equations require

that some of the equations in the body of this thesis be re-

arrLEed in order to use the software. - qs (2.1> a-7 '2.02

through (2.98) encompass the most significant modifications.

The Riccati equation solver, subroutine MRIC, is de-

signed for controller calculations and thus solves Eq (2.14)

directly. To solve Eq (2.13) using MRIC, it is impor-.ant to

note that MRIC transposes the F ratrix in the call statement.

T.herefore, before using 1,.RIC to solve Eq (2.1s, the _ai -rix

must be transposed before the call to MRIC.

The modifications to use subroutine DRIC to solve

Eqs (2.92) through (2.98) are more extensive. First, it must

be recognized that DRIC solves for the steady-state solution

of K defined in Eq (2.106). It is also necessary to note

that DRIC will not solve for K with a non-zero S matrix

(defned in Eq (2.97)) unless the proper transformation is

this transformation will be explained later n-"

append ix.

For the case of constant controller model matrices,

st -ionary noise inputs and constant cost-weighting matrices,

7qs '2.92) through (2.98) can be integrated directly or they

can :e solved using -he equivalent forms of the equations

T.i= exp Fc'ti+i - t i ) (0.1)
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t. C (C .

(t)= 1 (t+ 1  G Q G (t) d (C.1)
t. -

1

(t fti 1 §T(ti , ti V fGt d C4
t. ~x - I+1 ) d c3

1[(i) l i + l  _T(t, t i ) Wjxx T_(t, ti ) dt (C.4

+ T (t, t) v; + WT T(t, ) )dt (C.5)
-uxu

t.1 T

+ _T(t, t i) W dt (C.6)
1 XU)

where

t
T (t, t i)= ft i (t, Ir ) dor B c(0.7)-- ti -c

The forms in Eqs (C.1) through (C.7) are used because they

can be solved using the Kleinman suhroutines whereas forms

in Eqs (2.92) through (2.98) cannot. It is necessary to

make approximations to ?(t, ti ) and B_(t, t i ) in order to solve

Eqs (C.4) through (C.6) using the Kleinman routines.

The approximation that is used breaks up the interval

tm t. to t. into N, equal subintervalc.. During each sub-

interval, 41(t, t,) and P(t, t,) are treated as constants.

Smaller subintervals provide better approximation but require

more execution time, therefore a tradeoff is required. The
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subroutine that accomplishes the calculations of X(t ), S(t

and 1(t i ) allows the user to input the desired number of sut-

intervals, N. The routine then displays X(ti), U(t i ) and

(ti ) for that N, and allows the user to change the value of

and re c omnpu.te.

As stated above, constant values will be used over

%ach subinterval for (t, ti ) and !(t, ti. The constant

values used for the jth subinterval, fi and B. respectively,

are the average-values of I(t, ti ) and f(t, t i ) for the jth

subinterval. §(t, ti ) and B(t, ti) are calculated at the be-

ginning and end of the J th subinterval as well as a- three

equally spaced points between the beginning and the end.

These are the values that are averaged to form f. and B..

Thus, for At= (ti+ 1 - ti )

-average of t.) for all tE rt + (. - i-.j.veag -o z(t 1 i ,

t. + j tN_ .8

N

Baverage of "-(t, t9 for all te [t +(j-1 t

+ j At (C.9,

The Kleinman subroutine DSCRT simultaneously returns i(t, C'

and f E(t, ') d' and is the only major matrix subroutine
0

needed in order to compute . and Bj,

Vhen the approximations just described for 0. and B.

are used, Eqs (C.4) through (C.6) become
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-- El I - - "

N

jx (t ) Z() N C.

-(tj= ! W-xx B- + -uu -+ T -xu - - (+ .1 )
W B. B. 1

NN
a(ti)= =~1( +., 41 j hX. A (C0.12)

Once values have been obtained for i(ti+1 , t ), B d(ti),

Qd(ti), X(ti), U(t i ) and S(t i ) it is still necessary to trans-

form Lqs (C.1) through (C.6) in order to use DRIC, the matrix

Riccati equation solver. The transformation of the LQ sampled-

data controller is (Refs 7 and 10)

Ei+l) 'ti+ , ti ) _t i ) + Bd(t i ) R_'(t i )  {.3

where

['t-~l t)= i(ti, t ) -Bt(ti) i s(ti)  (C.14'

u'(ti)= u(ti) + U- (ti) S T(ti) x(ti) (C.15)

i-ow the quadratic cost equation that is minimized by

-'1 - *1+1) 4 L(tN+1 )

+ .fT ) ' x(t i ) + uT (ti) U(ti ) u ( i; (C.16)

- 11 - T_x t S I i)(C .1 -

:,'o," EoS (2.105) and (2.106) can be put into the format of
I

DRIC to solve for steady-state values of K' and G. In the
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notation used in this thesis DRIC solves

K= IT 1 ( I + B U- 1 BT +) - 1 1 + K (C.18)-c - _ . . . - -

which can be obtained from Eqs (2.105) and (2.106) by setting

S(t.)= 0 and using the matrix inversion (Ref 8)

(I - YT(Z Y + W) -1 Z)=- (I + Y T w-1 0)- 1  (C.19)

and defining Y T= B, W= U, Z= BT Kc and I to be the identity

matrix. Note that (C.19) holds only when W (U in this case)

is positive definite.

Once G* is computed usinc the results from DRIC, C*_c

can be computed from

-2TG*= G*+ S (C.20)
-c -C

Note, for W # 0 in the continuous-time case, the trans-

formation described in Eqs (C.13) through (C.17) and (C.20)

can be used if, in thoseequations, the Is are replaced by Fs,

Bds by Bs and Ss by W )s. Now Eqs (2.11) and (2.12) can be

used for the G* of the transformed system.
_c

As can be seen from the foregoing discussion, while

Kleinman's matrix software routines are very powerful, care

must be taken in order to arrange the equations properly so

that they match the arrangements used in these routines

(Ref 5).
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Apendix D

Software Performance Verification

To verify the performance of the software developed

to support this thesis, several test cases with known results

were used.

For the continuous-time software, 3 test cases were

used. The first is example 14.25 in Maybeck (Ref 1). The

second is example 5.3 in Kwakernaak and Sivan (Ref 13). The

third is the example given by Doyle and Stein (Ref 2). The

details of these examples appear in Table D.I. In all cases,

the truth model and the controller design model are equival-

ent.

For the sampled-data software, the same three test

cases are used. The intent is to show that as the sample

period decreases, the steady-state value of P (t.) a--
-X t xt I

proaches the steady-state value of its continuous-time counter-

part, Pxtxt(t).

Table D.2 presents the results of the-software verifi-

cation run for both the continuous-time LQG regulator and the

discretized continuous-time LQG regulator. The results of

the continuous-time case are in agreement with the sources of

the examples (Refs 2 and 7). By examining Table D.2, it is

evident that as the sample period decreased, the performance

of the discretized controllers approached that of their con-

tinuous-time counterparts. Also note in the table that for

a sufficiently large sample period, the discretized control-

Clers do not approach the steady-state values of their contin-
uous-time counterparts and may even diverge. This is ex-
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reCied since the approxizrnaziorns used in discretization are not

valid for large sample periods.

Table the presents the results of the software verifi-

cation runs for the sampled-data LQG regulator software. As

in ihe discretized continuous-time case presented in Table

D.2, the performance of the sampled-data controllers approaches

that of their counterpart continuous-time controller for

sufficiently small sample periods.
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TABLE D.1

Test Cases for Software Performance Verification

Test Case,1 (Ex 14.25 in Maybeck (Refl0) with T=2)

Program Inputs Expected Program, Outputs
F= [-0.5] G= [1] Kf C.45=

B= [0.5 ] H= [1] 0 [O.5]

Q= [2] R= [3] mxt mu=[0]

PC=[ 1] x t = [0] [179]

Wuu0= [ 4] 0 Ext

Vjxu= o] - W =[ 5] Pu= [ 0.1045]

Test Case 2 (Example 5.3 in Kwakernaak (Ref 7))

Program Inputs Expected Program Outputs

F=- 1 001f=[40.361
t0 -4.6 0 .1 1814.3]

0 i =[I 1 0] G*=[223.6 18.69]B= --

[0.781 _E=[ i0-7] Mxt= [ o T

Q= [10] o mu=[o]

[1 01 to [o, ooo4562 C]
POP =

I':uu [0.00002] -xx 0 -u= [2.26]

xu: [0]
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TABLE D.i (con't)

Test Case 3 (Example in Doyle and Stein,
' :'thout Robustness Recovery, (Ref 2))

Expected Program
Program Inputs Outputs

- Fo 1] B ] Kf[30 -50]-L1] G=[5o 10]

[ ,35] H[2 1] rn= [o oJG= ' -mt

L61 _ __ [i]
Q= [i] -x [o o] _u [o]
-- - Co [221 -613

F 0] -2800 473.3] x '

7,o 47 .3 80 L613 207:.
: ':-uu= [1] -Alxu ' E o u=[ .(1o)4]

Test Case 4 (Same as Test Case 3 Except that
Doyle and Stein Technique is Applied)

Expected Program
Program Inputs Outputs

all program input matrices same as
for test case 3. Then when V= I and

a2= 100 '[26.8 -4o.2]-

236 -613]

Pxt 613 1810]

q2=50 50= [20.4 j 7.7] T

F 268 -613]

Ex - 6 1 3 150]

iooo: i [16.7 -1.9]-

F 285 -6131
xt L-613 1360]

161

4-



i j i
01 1 

4-' .

I' r0 * * - c

01 0

0 0, +j r-

Z 4-' co I- C

"0 . ~

< z 00-

- 4- Ci)

00 r- V 0 0J

*4- NN

0

L Q

4-'

4.-4

0

-P031

UWw

CC) C't' -4- -4 - N

162



C)~

C) 0 0

\ N0 0 0 0 0qV Cl \ l l CQ \, --
M ~ ~ ~ ~ ~ --4 C -4' 0 \ \ 0 C 0 c \

N~ N N I C) I N

4LJ VL C C\J \ C'- \0 C~ C Cl 0 ' .

) N) 4 o~ N

I N

0 c0 0

c 0~

C) 0 '- I - I 1j
0 E0 -0 .q

0 NO 0 0 ~ 163



C.) a)

-P ~
4-' C) .

U) I 4- CC

00

_ 4'
a)C C) a

C).' C
co X6

r4-1 4-1C

~ .~ 0

.- t 4--) -

I 4-' C) (

m' dC-4J 4-' 0
4-'~~~c CO C O .- )l- )C

-P~ ~~~~ if' ( N ) r~ ~i -
O~~U Q) '- IU - t

N> 4 -4-

__ _ __ _ U) C) H 0

H 0 *- -
H q 0- 4 Q

E-4~~E Nm- - 0 -
0 0 C0

C) 4-H )

ofc - ~ C
4-'. 4-1~

164 H



L ---

_ _ I

0- J ' y 0 00
* 4 '- - 4\ N N I \ N N I N-

0 ) _4 ON N \C\I

qH a I >4 c 0 \ l

4- 0 0- d ICc
I 4 0 l -4

C 0) N-- -- N~ "- C 1 . Cl \) C\ \-4

C\ \ * NI N \0

I Ct

4-11
0)

w~ N N

m _ __ _ __ __ __ __ __ __ __ _ __ __ __ __ __ __ ___165__ _



_ _

__________

C~7-1

U2~ 0

I L I N CQ -

C) *0 -4 N 1-4

co N

E--4r ir-1 11 r-

E-4 '4 I~I 4 I .

I 4-' ~0166



4-'4-'

0 4-' 4)

r~~ C) ~
C)) 4'

oz 4' 4- -PC >

.a C)
.H 10C~2 Q C) ' 4o1 4-- Fz i to

4-D4-' H C) 0 C w 0

0' C) CH~ I4 ) 4C)

LO '- C C) 4- ) C3) 0-C) -44 -4-- c 4-)
-P 4-D - - 0 0-- m) z~>od C) 4- 0~ 0 ) C

S CH *H Z: C -
Cd U) --HU ) I' U

U) ri) 0f H ~ )
0 U) a)~ H ~ 0C 4' C

H 0H 0' -1: - 4'
C) ct C. ) -, Ci +D +D

::5 4- C) . ~4 4-> U
C)0 0H 4 ~ C -

4S U)i a) U)r- ~ C-P c ~ l 0 V' C) U) E) 4Hz~-4 -P : 4- 0 ~ Lo 0 4-E-i~C 't Q)M -
C) C) 0 ~ CH~

LO U) r l) ' Z 4-D 4 0
U ) E) 4U)l, +

$z a) 4. $:: w
C) C) b.0 .5- H

L-D -P4 5 - 0C C) 4-I
C) U) a) 0) CC ) U) 'o C) 8 Q) Et o 0

H ) I~ W C) a)4-

4' b. C ) *H4-
4- 4' 4 C) C) r- U)~ CE ) ' C) C) m 0 C) 0 - C) 0 V)
c) C~ m~ mH -l1- 0 -C ' *1 U) 0 0.1 E- -H *H L) ' 0 C C

4' ) ' u 4'4 1 CH

cS Pfl -H C) c~ C) U
+, C U) U)) 00 t3: C.o' 4-D C) >) *HL)H

r-I 4' '0 0) C)z
a-4- +- '4 >) > 'I O ~ 0 C ~ U

0 - 0 0-- *H *Ht 0)
0 C) co z C)+)0 C

-~ ~ - J >167



;,pTendix E
Users Manual for

Linear Quadratic Gaussian Regulator Performance (IPQGRP

The purpose of this manual is to describe how to use

LQGRP to design and test linear Quadratic Gaussian Regulators.

The software provides the capability to enhance the robust-

ness of both continuous-time and sampled-data LQG regulators.4

The techniques used are described in a paper by J.C. Doyle

and Stein (Ref 2),inMaybeck section 14.5 (Ref 10),and in the

body of this thesis.

In-put

The program always begins in the input mod-. For the

first run through the program, a list of input/output options

(1-6) and a list of options to designate which vector/array

is to be input or output (1-21), is provided. These cptions

are presented in Table E.1. Note that when entering F or

R using options 11 and 13 respectively, the'value entered7 c

ma, be in either continuous-time or sampled-data format. User

response to prompts at other places in LQGRP is used to distin-

guish between the formats.

During the input mode of the program, the user selects

the desired vector/array to be input, then follows prompts

about entering I/o options, dimensions and vector/array ele-

merts. Note that option 18 allows all controller model mat-

rices to be equated to their truth model counterparts. The

number of deterministic states in the system models must also

be input at this time (see discussion under LQG Regulator
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T illE -1

Input Routine Options

Matrix Vector Selection Cptions

Option £unction

i Truth model Ft matrix

2 Truth model Bt matrix

Truth model G t matrix

4 Truth model Ht matrix

5 Control.er design model F matrix
6c

6 Controller design model B matrix
-c m

Controller design model G matrix

9 Truth model initial covariance matrix, to

10 Truth model input noise strength matrix, Qt

11 Truth model measurement noise, strength matrix, Rt

12 Controller design model input noise strength matrix,
Q c

13 Controller desigrn model measurement noise strength
matrix, Ec

14 Truth model initial state vector, x

15 Control cost-weighting matrix, v'

-16 State cost-weighting matrix, 7' XX

, Cross (state-co-..trl,' cost-weighting matrix, C.-XU
18 Equate F , O-c' f Q9 c to their truth model

countecr~artC

19 Terminate input mode, start regulator development
mode

2C Store all matrices/vectors from options 1-17 to
local file Tape?

21 Read all matrices/vectors 'or options 1-17 from

a fie T1re 6
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TABLE E.1 (con't)

Input/Output Options

IL

Option Action Taken

0 Terminate main program

1 Read entire array (row by row) or vector

2 Read entire array (row by row) or vector
and then print it

3 Read selected array or vector elements

4 Read selected array or vector elements

and then print them

5 Print the entire array or vector

6 or Return to calling program without taking.
greater any action
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Once a truth model and controller model have been com-

pletely entered and the cost-weighting matrices have been en-

tered, option 20 will store all this data to local file Tape7

for future use. Cnce a file Tare- has been created (and pos-

sibly stored as a permanent file) option 21 can be used to

read data from it if it is first copied into a local file

Tape8. Note any number of models can be entered during the

input mode and ztored to Tape7 for future reference.

Note any options 1-18, 20 and 21 can be executed any

number of times during the input mode. This allows for chang-

es to be made to specific vector/arrays in case an error iL

made. Option 19 terminates the input mode.

When the input mode is re-entered at the termination

of the performance analysis routine, any, all or none of the

options 1-18, 20, 21 may be executed.

Sto-p-ing LQGSIRP

LQ=z ma: ce aborted gracefully while in the input

mode. Simply choosing any option 1-17 and entering a zero

for the I/C option and (any number for the dimension required,

if required) will accomplish the abort.

Q. Regulator Set-Ur

Uoon leaving the input mode, the program enters the

,Qk regulator set-up mode. At this point the user must chccse

either a continuous-time controller or a sampled-data control-

ler. Note, there is provision in LQGRP to allow deterministic
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(ie, states which are not controlled by input noise) states

(to be part of the system description. Note that such states

should be the first states in the state vector when entering

system model matrices in the input mode. The deterministic

states are removed from the system controller design model

before Kalman filter gain calculation. The Kalman filter gain

cbrresponding to those states deleted from the Kalman filter

gain calculations is set to zero.

Continuous-Time Controller

If the continuous-time controller is chosen, the user

has the option of calculating and displaying the eigenvalues

of both the truth model and controller model F matrices, of

modifying the G Q GT (used in the matrix Riccati equation for

calculating-the steady-state P matrix), and choosing the total

run time and the time increment between integration steps.

The modification to G Q GT referred to above was derived by

Doyle and Stein (Ref 1). Simply, it replaceg G Q G by Q(q)

where

Q(q)= G Q G
T + q2 B V B

T

q 2is a scalar design parameter such that q-- causes the LQG

regulator to regain asymptotically the robustness character-

istics of a full-state optimal deterministic feedback LQ con-

troller. V is also a design parameter that must be Pny sym-

metric positive definite m x m matrix where m is the number

of inputs to the system input matrix B. Note, V= I is a good

first choice when there is no reason to weight the addition
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of pseudo-noise to selected states. The filter poles, LQ

controller poles, and the LQG controller poles are computed if

the user wants to examine them.

Sampled-Data Controller

For sampled-data controllers, two basic options are

available. The first merely discretizes a continuous-time
a

controller. The second developes a sampled-data controller

based on the matrices stored during the input mode.

In the first option, a continuous-time LQG regulator

is set-Up (see previous section) and is then discretized using

first order approximations. Note that when entering the time

increment for the continuous-time controller to be discretized,

the time increment will become the sample-period of the discrete-

time controller.

In the second option, an appropriate sampled-data con-

troller is set up using the values entered during the input mode.

In this option an approximation to the values of the continuous-

time cost-weiahting matrices, X(ti), U(ti) ad S(ti) for

sampled-data controllers is made. A discussion of this

approximation is in Appendix C. Briefly, it entails using

constant values for certain matrices for each of a number

of subintervals of the sample-period. The more subintervals,

the better the anproximations, but the more computer time

required.

Also in the second option, there are two design options

for increasing robustness properties of the controller. The

first is a discretized version of the Doyle and Stein technique
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described previously in the continuous-time section. The

second option for increasing robustness involves picking K,

(the Kalman filter gain directly such that

2= g B W

where I is the controller design model state transition matrix,

!d is the discrete-time input matrix and W is any nonsingular

m x m matrix where m is the number of inputs to the system. The

user has the option of picking any W or of calculating

W= (H I- I B d)- as in Maybeck (Ref 10). As in the continuous-

time case, q is a scalar design parameter that, as q--, asympto-

tically causes the LQG regulator to recover the robustness

characteristics of the full-state feedback optimal deterministic

LQ regulator. As in the continuous time case the filter poles,

LQ controller poles and the LQG regulator poles are computed if

the user wants to examine them.

Performance Analysis

After the LQG regulators are properly.formatted by the

aforementioned routines, a covariance analysis is performed.

This analysis is described in the body of the thesis. First a

set of augmented system matrices are formed and then the

performance analysis begins. Eqs (E.1) through (E.8) describe

the augmented system used in the performance analysis.

xT= xT xT  (Ei)
-za= fa-a + B Yd + a a t

where

tft -t -cz -t -t Pcx
Fa B f(E.2)
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Bt c Y(E.52 _[ao .i 'cz (E-'

w_ (E6i
xtJ

and then

MXa(t)= -fl(t' to ) Mxa(to)
xa , mxa

Note fn(1 tho) ( ) ior smd-dta stm

Ex Xa a th auxe~e : 7  :;a I Z

t

- 0

Tha t ,  ot o n - ao tprinting out the augmented

system matrices. The user also has the option of sy-ecifying

hoemany time increments there should be between plot points

and points printed at he terminal for Pxa and F :he Co-

variance of the augmented system and the controller, respec-

~tively.
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Te plot points are formatted and stored to a series

of local files as follows:

m -a Tape 12
Mxt

Fx - Tape 13

Mu - Tape 14

Puu - Tape 15

where mx t is the mean of the truth model states, Pxtxt is the

covariance of the truth model state ( only diagonal entries

are written to Tape 13), mu is the mean of the controls gen-

erated and P u is the covariance of the conttols generated

(only diagonal entries are written to Tape 15).

Each performance analysis run is tagged with a run

number, total time, sample-time and the dimension of the state

vector or control vector as appropriate. This is the first

record of information written to the local files, Tape 12

Tape 15 for each run. The last two records written to these

files for each run contain the minimum value of the data array

and a scale factor; both are needed for plotting.

Upon exit from the performance analysis routine, the

program re-enters the input mode and changes the run number.

Plotting

In order to plot the data, it is necessary to abort

the LQGRP program and execute the plotting program, MYPLOT

on a terminal connected to an HP plotter. If the HP plotter
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is unavailable or unacceptable for some reason, MYCLPT will

generate a Calcomp plot file at a terminal that can be routed

to the Calcomp plotter.

Either MYPLOT or MYCLPT reads data-formatted by the

performance analysis routine off any local file, Tape xx

(where xx is 12, 13, 14, or 15). Note that if the user wishes

tGo do any manipulation of the data tapes before using this

program, the result can be stored on any tape numbered 1

through 99. This number can be used in place of 12-15 as

indicated earlier. Before plotting it gives the user the

option to preview the data. Note, when previewing, the user

should check to be sure the last two data entries are the

minimum value and the scale factor, respectively.

After each plot, the user has the option to abort,

plot a different variable (ie, xt instead of xtl), read and
t2 t1

plot the next run of data from the same tape, or read and

plot data from a new tape. All options executed in either

program are results of user inputs to self-explanatory program

prompts printed at the terminal.
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Typical LQG Regulator Performance Analysis Session
with LQGRP and MYPLOT or MYCLPT

1. Preliminaries

A. At the beginning of the program it is necessary
to have available for input the matrices listed
in Table E.1, options 1 through 17 (Could all be
on local file Tape8 saved from last run using
option 20). The number of deterministic states
in the model is also needed. (if any, they must
be the states listed first in the system descrip-
tion).

B. Attach LQGRP.

C. Be sure the INPUT and OUTPUT files are connected
to the terminal.

D. In response to COMMAND type LQGRP.

2. Input Mode- Always begins with a printout of the "run
number" (got here from I.D above or 4 bel.ow)

A. Respond to prompts about entering matrices (note
the information in Table E.1 is printed at the
beginning of the first run of LQGRP)

B. ff desired, use option 20 to save all matrices on

local file Tape7.

Cl. Terminate input mode, using option 19

C2. Terminate program, using any option 1-17 and I/O
option 0 (and any dimension if required by prompt,
see section 5 below)

3. Regulator Setup Mode (got here from 2.Cl above)

A. In response to prompt type
1. C- for continuous-time LQG controller
2. D- for discretized continuous-time or sampled-

data LQG controller.

Bl. (got here from 3.A.1)
1. Respond to self-explanatory prompts (note time

increment required by prompt controls maximum
number of points from time 0 to run time and
does not affect the accuracy of any results.

B2. (got here from 3.A.2)
1. In response to prompt, choose to

a. Discretize a continuous-time controller or
b. Choose a sampled-data controller
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2a. (got here from 3.B2.1.a)
1. Note that when entering time increment for

continuous-time controller it will become
the sample-time of the discretized con-
troller and affect stability.

2. Follow the remaining prompts.
2b. (got here from 3.B2.1.b)

1. Answer prompts
2. In response to prompt about subinterval

for calculating X, S and U, remember a
better approximation is obtained for more
subintervals but that this requires more

b computer time.
3. Follow remaining self-explanatory prompts.

4. Performance Analysis Mode (got here from 3.B1 or 3.B2)

A. Be careful in selecting number of prints at termi-
nal (in response to prompts) of m , mu, P and
P since the printouts require a C_Al aUsignificant amount of time and paper.

B. Be careful in choosing the number of points to go
on the plot files (in response to'prompt) since
the number of points significantly affects plot-
ting times. (For example,-100 points plotted on
the HP plotter takes about 5 minutes, 200 points
approximately 10 minutes etc..... .:ith 200 points
to be plotted, there will be more than 20 points
-lotted per inch since the time axis of the plot
is scaled to 7 inches).

5. Data File Plotting/Storing (got here from 2.C2)

A. If data was saved on Tape7 using option 20, now
is the time to create a nermanent-file of this
data (see terminal operations manuals,

B. if you don't have time to plot the data on local
files Tapel2, Tapel3, Tapel4 and Tape 15, now is
the time to create permanent files for this data.

B2. 1.ant to plot data from todays run or from previous
runs stored on permanent file.
1. Make sure files are rewound before use
2. Atch cory. of TVYPLO or ,.YCLPT depending on

where you want the 'clots made.
a. Type MYPLOT or ,YCLPT in response to "COM-

MAN *'.,

b. F oio.' prompts C-e. -CaZ I .: ct r at
AFIT can only handle 5 plots per plot file.
It is necessary to terminate MYCLPT (fol-
lowing self-explanatory prompts) after
each set of 5 plots is created. Then the
plot file should be routed to the plotter,
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and then MYCIPT can be re-entered 
for the

ncex 5 plots).

C. If you are using MYC?' , the 
plot fLe

.uat be routed to the plotter at the termDi-

nation of KYCLPT.
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ArpendiX F

Anollo Model Performance 
Data

This appendix contains additional mean 
and covariance

plots used to support the results and 
conQlusion of Chapter
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